
1.
2.
3.

4.

Science Platform
The Rubin Science Platform (RSP, formerly LSP) is the environment provided for user access to and
analysis of LSST and user-generated data products.

It presents three "Aspects" to the user:

The Portal Aspect: a Web application that provides user-friendly, interactive query and
visualization tools for catalog and image data;
The Notebook Aspect: a JupyterLab-based, personalizable environment for interactive Python
coding, with access to the LSST data products and additional user computing and storage
resources; and
The API Aspect: a set of Web-based APIs, primarily following IVOA standards, that provide
access to the LSST and user-generated catalog and image data products.

These rely on an underlying infrastructure that provides:

User computing, including resources supporting parallel, next-to-the data analysis;
A "User Workspace" comprising both a file-oriented storage system and a user database
system, each accessible from all three Aspects;
Database services (including both Qserv and conventional RDBMS components);
Pre-built releases of the LSST Science Pipelines software stack and other commonly-used
Python software, such as Astropy; and
Authentication and authorization and other support services.

Users can use the Portal Aspect to do queries and visualizations, and UI-driven interactive exploratory
data analysis; or they can work in the Notebook Aspect to do Python-based ad hoc data retrieval,
analysis, and visualization, using tools of the users choice. Whether from a notebook at the Data Access
Center or remotely from an external personal or institutional system, they can also use the Web
interfaces of the API Aspect for data access, whether programmatic or using external IVOA-compatible
tools such as TOPCAT.

All three of the Aspects are, in effect, front-ends on the databases and files that ultimately will reside in
the Data Backbone, and which are shared across Aspects. In the short run, the databases and files live
in non-Data Backbone systems.

The system is designed to facilitate analysis workflows that cross from Aspect to Aspect. For instance,
the results of a query performed in the UI-driven Portal Aspect can be accessed in the Notebook Aspect
via a combination of a simple UI action and Python function invocation; data created from a user analysis
in the Notebook Aspect can be visualized in the Portal Aspect, and so on.

We will simultaneously operate multiple distinct instances of this Science Platform. Each instance has its
own list of authorized users, update cadence, and upgrade procedures.

Currently (2019) we operate two instances on hardware located at NCSA: a "stable" instance aimed at
providing services both internally and to a set of "friendly" users, e.g., from the commissioning team and
from Science Collaborations, who wish to familiarize themselves with the Science Platform environment
as it continues to develop; and an "integration" instance that provides a platform for testing of new
features and fixes for each Aspect in an environment in which the others are available, and that is
periodically used for end-to-end tests of the entire Science Platform environment.

Moving into the Commissioning and Operations phases of the project, these instances will be augmented
by additional ones:

Chilean Data Access Center for science users for released data products.
US Data Access Center for science users for released data products.
Internal QA of L1 and L2 productions in the production environment. This instance has access
to the published Data Backbone contents at the Archive but also has specialized access to
unreleased intermediate data products and the internal, unreleased, incrementally-loaded Qserv
instance for the next Data Release. In Operations, this instance primarily supports Science
Ops. It can also be used by the Commissioning Team. It might have customized portal pages
or other components not normally provided in the DAC instances above.
Commissioning Cluster at the Base with low-latency access to the Data Backbone endpoint
there. This instance primarily supports the Commissioning Team. Any customizations for the
QA instance should be available here as well.

The integration instance, at least, will continue to exist indefinitely to support pre-rollout final testing of
updates to any of the Aspects or other LSP components.

There may be operational models and requirement relaxations under which some or even all of these
instances could be combined.

Initial deliveries of the platform use simple, less-functional components. Later upgrades will improve the
components. The initial delivery of (a) a basic Portal integrated with prototype API Aspect services, and
(b) a minimally functional notebook-mode QA instance is targeted for some time in Calendar 2017. The
delivery of an initial fully integrated version of the other capabilities is targeted for November 2019 in
order to precede the start of obtaining on-sky data with ComCam.

Completion milestones for the
Science Platform
Design Notes
Live ObsCore services for staff
Notes on Requirements and
Conceptual Design
RSP API Aspect
RSP Portal Aspect
Science Platform External
Exposures and Formal Tests
Science Platform Final Design
Review
Science Platform Meetings
Science Platform risk
management
Talks

https://confluence.lsstcorp.org/display/DM/Completion+milestones+for+the+Science+Platform
https://confluence.lsstcorp.org/display/DM/Completion+milestones+for+the+Science+Platform
https://confluence.lsstcorp.org/display/DM/Design+Notes
https://confluence.lsstcorp.org/display/DM/Live+ObsCore+services+for+staff
https://confluence.lsstcorp.org/display/DM/Notes+on+Requirements+and+Conceptual+Design
https://confluence.lsstcorp.org/display/DM/Notes+on+Requirements+and+Conceptual+Design
https://confluence.lsstcorp.org/display/DM/RSP+API+Aspect
https://confluence.lsstcorp.org/display/DM/RSP+Portal+Aspect
https://confluence.lsstcorp.org/display/DM/Science+Platform+External+Exposures+and+Formal+Tests
https://confluence.lsstcorp.org/display/DM/Science+Platform+External+Exposures+and+Formal+Tests
https://confluence.lsstcorp.org/display/DM/Science+Platform+Final+Design+Review
https://confluence.lsstcorp.org/display/DM/Science+Platform+Final+Design+Review
https://confluence.lsstcorp.org/display/DM/Science+Platform+Meetings
https://confluence.lsstcorp.org/display/DM/Science+Platform+risk+management
https://confluence.lsstcorp.org/display/DM/Science+Platform+risk+management
https://confluence.lsstcorp.org/display/DM/Talks

Portal Aspect:

The initial version of this is the PDAC.

Initial components include:

SUIT query/visualization portal using Firefly — data retrieved via DAX web services
DAX web services

Low-level:
dbserv

Raw ADQL/SQL interface, output format translation
Talks to Qserv

 Higher-level
metaserv

Queries databases (e.g. ScienceCcdExposure table)
Generates lists of Butler ids (dataset type plus dataId)

imgserv - mosaic/cutout, regeneration, output format translation operations
Files in GPFS with organization as prescribed in , RFC-95 RFC-249
Qserv database

Later:

An authentication/authorization component will be added that connects to or passes credentials through/to all other components.

A Global Metadata Service will be created to track groups of datasets () in the Data Backbone. The Global Metadata Service also Butler repositories
stores information about available databases.

metaserv then talks to the Global Metadata Service.

imgserv could be expanded to become a read-only "butlerserv". There are two additional functions: returning Butler locations of datasets, which
requires a Butler client on the remote end to retrieve and deserialize the datasets, and format translation in which an internal-to-imgserv Butler
retrieves the in-memory object for the dataset and streams it to the recipient in a desired format.

Qserv per-user databases will be added as the results of and inputs to portal queries; dbserv will be able to create and query these.

Other RDBMS-based (non-Qserv) databases will be added, including the SQuaSH QC database, provenance databases, and non-Qserv per-user
databases; dbserv will be able to create (where appropriate) and query these.

Per-user file storage will also be added.

The Data Backbone will manage the files, replacing the direct GPFS interface (GPFS will still be used underneath). It will perform inter-site replication
and transparent (except for latency) retrieval of files from the tape archive. The Butler must be able to retrieve files from the Data Backbone. This can
be a staged process (requesting files through a translation dbbToButler utility) and then using a Butler configured to talk to the local filesystem, but it
will be more convenient and desirable to have the Butler talk directly to the Data Backbone.

Notebook Aspect:

The initial version of this is for Science Pipelines QA on processed HSC data and does not access SDSS or WISE data in the PDAC.

Minimal authentication/authorization (Unix user ids on JupyterHub server)
Local JupyterHub server
Files in GPFS
"Monolithic" non-Qserv RDBMS (expected to be MySQL, could even be Oracle or Postgres) instance on new lsst-db containing HSC catalog
data products and per-user databases
Filesystem Butler interface

Used with local filesystem and GPFS
SQLAlchemy (as our current RDBMS-agnostic interface) or Python DB-API interfaces to databases

Connects to RDBMS
Connects to SQuaSH QC database

Science Pipelines stack installed and available in the noteboook
Firefly visualization widgets available in the notebook
Batch computing on the Verification Cluster via separate shell or shell escape from the notebook

Later:

The Data Backbone and its Butler interface are described above.

Needs Updating

The remainder of this page needs to be updated to be consistent with recent developments, , and , and in particular to LSE-319 LDM-542
reflect the move of the design to a "VO First" architecture organized around IVOA services.

https://jira.lsstcorp.org/browse/RFC-95
https://jira.lsstcorp.org/browse/RFC-249
http://ls.st/lse-319*
https://LDM-542.lsst.io

DAX services will be implemented to allow added operations on top of file retrieval and database query, including TAP, SIA, and other VO interfaces.

An OpenStack cluster with (for example) Kubernetes is provided for interactive computing.

The JupyterHub server is expanded with features such as:

Subdomain-per-user and wildcard DNS/HTTPS for security (I think this is best practice)
KubeSpawner (for example) to provide elasticity for notebooks and compute

The batch cluster could be moved to OpenStack as well.

Straightforward transport of computations from the notebook world to the batch world, controlled by the notebook, remains to be defined.

When Qserv-based data products, per-user Qserv databases, and other RDBMS-based databases are available, connectivity to them through Python
DB-API, SQLAlchemy, and the Butler will be provided.

	Science Platform

