
Gitolite Repository Hosting
The LSST repositories are managed with . If you're a new user, read gitolite here to get started.

Gitolite Remote Commands

A number of useful commands can be triggered by both admins and devs, by ssh-ing to . These are gitolite's . git@git.lsstcorp.org admin defined commands
The following alias is also useful (and used in the examples below):

alias gitolite="ssh git@git.lsstcorp.org" # bash users
alias gitolite "ssh git@git.lsstcorp.org" # (t)csh users

Use the command to see which repositories you are allowed to access. Use the command to show the full list of repositories to which this info expand
expands:

gitolite info # see which repositories you can access
gitolite expand # see all repositories to which these expand

Note that the patterns shown in the output are regular expressions, not shell globs (i.e., '.' character is a stand-in for 'any character', and not a dot as it is
with shell globs).

Creating a Repository

Repositories are actually auto-created when you try to , , or perform any other operation on a nonexistent repository. For example: clone push

mkdir newthing
cd newthing
git init
Write code, then add (all) the new files to your staging area:
git add .
Commit the files to the local branch
git commit -m "New awesome package"
Now add a new remote repository for your package:
git remote add origin git@git.lsstcorp.org:contrib/newthing.git
Push the files to the remote repository; -u adds upstream tracking
git push --all -u
Update the tags too:
git push --tags

Deleting a Repository

To remove a repository (assuming you are its owner), use the command: trash

gitolite trash contrib/obsolete_thing.git

This command doesn't actually delete the repository; it only moves it to . Use to see what's in the trash, and , to restore a trash list-trash restore

deleted repository from the trash. To permanently delete a repository, someone with the git account password must do the following:

ssh to git@git.lsstcorp.org
cd ~/repositories/deleted
rm -rf newthing.git

This is a safety feature: it should be very hard to permanently delete anything from a repository.

Forking a Repository

Creating a repository in the hiearchy requires a .LSST special procedure

http://gitolite.com/gitolite/index.html
http://sitaramc.github.com/gitolite/user.html#_listing_repos_you_created
mailto:git@git.lsstcorp.org
http://sitaramc.github.com/gitolite/ADCs.html

Forking is essentially making a server-side repository copy (a clone), allowing you to clone an existing repository (e.g., for experimentation). For example:

gitolite fork LSST/DMS/afw personal/mjuric/afw
git clone git@git.lsstcorp.org:personal/mjuric/afw

This now gives me a full clone of afw, with full rights to all of its tags/branches/etc. Note: the server-side clone is done in a space-efficient way very
(hardlinking is used where possible). If you want to fork the repository to a remote site (e.g., for control of the stability of the stack while retaining the ability
to exchange commits), see this.

Renaming or Moving a Repository

To re-name or move a repository, do:

gitolite mv <from_name> <to_name>

Unlike UNIX , cannot be a directory: it must be a fully-qualified repository name. For example: mv <to_name>

gitolite mv contrib/mything.git contrib/bettername.git

Note that the extension is optional in the above command. .git

Admin-Only Operations

Creating a Repository in LSST/ Hierarchy

One cannot directly create (or delete, but you can trash) repositories in , but if you're a member of , you can move an existing user LSST/ @admins
repository there using:

gitolite sudo root mv <from_repo> <to_repo>

Since repositories are auto-created if they don't exist (see above), allowing even a small subset of @admins to create them in the LSST/ hierarchy may

lead to lots of spurious repos due to typos. Because of that, only the user 'root' is allowed to create (or delete) repositories in LSST/, and user ' ' can root

only be accessed using the ' ' command. This adds an additional layer of safety.sudo

Deleting a Repository (that you don't own)

To remove a repository (if you are not the owner), check who is the owner, and run the command as the owner: trash

gitolite expand contrib/obsolete_thing.git
gitolite sudo <owner> trash contrib/obsolete_thing.git

SSH-ing into the git Account

Use a password to get shell access (as keys will redirect to gitolite). To force SSH to skip public key auth, do:

ssh -o PubkeyAuthentication=no git@git.lsstcorp.org

Managing LSST gitolite Users and Permissions

User and permission management is done via configuration files in the standard gitolite-admin repository. You have to be a member of @admins gitolite
group to access this repository. Membership consists of roughly one person per DM site. For the exact list, contact lsst-admin@...

For user management activities, first clone to your local machine: gitolite-admin

git clone git@git.lsstcorp.org:gitolite-admin

https://dev.lsstcorp.org/trac/wiki/GitForks

Adding or removing users

Add the user's SSH public key to a file named in the gitolite-admin repository. For example, to add user mjuric, add mjuric's public keydir/username@0.pub
key into:

keydir/mjuric@0.pub

If the user has more than one key, add as many as necessary by changing the numeric suffix following the @ sign (e.g., , etc.).keydir/mjuric@1.pub

Next, add the user to conf/devs.conf, to the @devs group. For example:

@devs = mjuric

Commit the changes, and push them upstream to make the changes effective:

git commit -a
git push

To remove users, simply remove the public keys and their entries from file, then and .conf/devs.conf commit push

Removing Accident From a Repository

Large files (usually, test data) have on occasion been added accidentally to a repository. Below is a recipe for to remove them. @admins

git clone, plus don't forget to create another clone for safety, comparison, etc.
Then do:

git filter-branch -f --index-filter \ 'git rm --force --cached --ignore-unmatch <pathToFile>' \ -- --all

In our case the looked like etc. Repeat for <pathToFile> tests/case02/data/Object.txt, tests/case02/data/Source.txt
every file you are removing.

Remove the files push the result (using the force):

rm -Rf .git/refs/original && \ git reflog expire --expire=now --all && \ git gc --aggressive && \ git
prune
git push --force

Checkout the branch where the offending files were committed and "git push --force" that branch

Backup

To back up all of the repositories simply back up anything and everything in . Note that is a symlink to ~git ~git/repositories /lsst_ibrix
, that should be backed up as well./gitolite/repositories

NOTE: This is history rewriting and should be done only after consulting mjuric!

mailto:keydir/username@0.pub
mailto:keydir/mjuric@1.pub

	Gitolite Repository Hosting

