Data Units and Graph-Based Inputs to defineQuanta

This page is a design proposal to address the problems in the baseline Super Task noted in the last section of SuperTask Status: Science Pipelines
Perspective. In this design, we replace the camera-dependent dictionary data IDs currently used by the Butler with a more structured set of classes that
are camera-independent. Camera-specific data ID keys will still be relevant in the user-provided expressions that describe that output datasets should be
produced and what input datasets should be considered, but these expressions will be explicitly transformed into to a new data structure containing only
camera-independent classes before they come into contact with any Super Task.

Units and Datasets

A Uni t is a conceptually similar to a data ID key (i.e. "visit", "ccd", "patch"), and a particular unit may (for some cameras) map exactly to an existing data
ID key. Units, however, are considered to be generically important quantities from an algorithmic perspective, and hence they are camera-generic. A
Dataset is analogous to a combination of a dat aset Type and its data ID; a Dataset class corresponds to a dat aset Type, while an instance adds a tuple
of Uni t instances that represent the data ID in a camera-independent way.

In code, Uni t is an abstract base class that holds an immutable unique identifier whose type is defined by the subclass, such as an integer ID for visits, a
tuple of integers for patches, or a string name for filters. The actual types and values of these IDs are unimportant, and may in fact be camera-dependent,
as long as the values are globally unique identifiers within a camera. A Uni t also holds a dictionary of all the datasets that are defined on that unit (i.e. all
of the ProcessedVi si t | nages for a particular visit), and has an abstract canmer a() method that must be implemented by concrete derived classes. Un
i t subclasses define attributes that link one Unit to its related Unit instances (e.g. the visit that a sensor belongs to, and vice versa).

The set of all Uni t s that may be used to define a Dat aset is shown in the the diagram below. Some of these classes (with italics) are themselves
abstract, and need to be subclassed in an obs package to create a concrete Unit class. Only the Tr act Uni t and Pat chUni t classes are used directly
by all cameras. Dat aset s and Super Tasks may interact only with the classes defined here, however; per-camera specializations will be used only to
make globally-unique identifiers and to map Uni t s to the per-camera keys we use in data IDs today. It is, of course, quite likely that I've actually missed
one or two important kinds of Uni t , but it's highly unlikely that number is > 5, and the important point is that the set of all Uni t types is itself an important
part of this abstraction.

Some Uni t s inherit from the intermediate base class Spat i al Uni t, which represents a Unit that occupies a specific area on the sky. It holds a
conservative (inclusive) approximation of that region as an attribute (probably something like a sphgeom RangeSet in a particular pixelization), and a dicti
onary linking it to all of the Spat i al Uni t s whose regions overlap its own. Like the other link attributes, this dict may be empty or have some possible
relationships missing.

The diagram below only attempts to show a few examples of concrete Dat aset s. Unlike the set of all Uni t types, the set of all Dat aset types is very
much dynamic: some Dat aset s may be defined only when a Super Task is configured; the input and output datasets of a Super Task will typically be
defined by a special pex_conf i g field that has a user-configurable name and a SuperTask-defined set of units. It may even be better to not define a
separate derived type for every Dat aset , and instead have a single flexible data structure with e.g. __get att r__ overloading for attributes that allow it to
be used for any Dat aset ; | consider that an implementation detail. | think it's easier for the conceptual discussion to think of them as classes.

Uit
value T TInE, str, tuple]
datasets : {name : set<Dataset>}
camera() ->
ash__()

str
: hash(camera(), value)

Filtertnit SpatialUnit
VISITS : TEgion : SKyRegion _
1 overlapping : {name : set<Spatialunit-} [Patchunit
e ppsng | £ . | Eract : Tractunit |
camera() : None

Dat eRangeunit
begin : Date
end : Date

Deeptoadd
tch ¢ Patchunit

®| Hiter Filterunie

Units() ¢ (patch, 7ilter]

tract : property{patch.tract)

Tractunit
patches : set<patchUnits

VisitUnit
Tilter : Filterunit
L sensors : set<SensorUnit>
dateobs : Date

Warp
vIsit : VisitUnit
+ L @ftract i TractUnit

RanUnit SensorUnit units() : (visit, tract)

Filt . t t.filt

Sensor . SensorUnit VISIT ; VisitUnit ilter : property(visit.filter)
Visif : property(sensor visit 4 rau_:_set<Rawlnits
filter: property{visit.filter Tilter: property(visit fllterg L
dateobs: property(visit.dateobs) dateobs: property(visit.dateobs)

MasterFlat
valid : DateRangeUnit
filter : Filterlnit
Units(] : (dates, filter]

Proces sedVisitinage
sensor_: SensorUnit
Units(] : (sensor,]
visit © property(sensor.visit)

i T (sensor, tract)
visit @ property(sensor.visit)

Calibratedvisitinage
Sensor : Sensorunit
tract : TractUnit

Datasot
ATt - RawUnit D L
Tnits() (omit,) | TITST > tplets

hash’_() : hash{units()}

DatasetGraph and the new SuperTask signatures

Because of the links between them, a set of related Uni t and Dat aset instances naturally forms a graph-like structure. We define the Dat aset G- aph
class as a top-level entry point to that graph:

https://confluence.lsstcorp.org/display/DM/SuperTask+Status%3A+Science+Pipelines+Perspective
https://confluence.lsstcorp.org/display/DM/SuperTask+Status%3A+Science+Pipelines+Perspective

cl ass Dat aset Graph:

def __init__(self):
sel f.datasets = {} # dict of {name: set<Dataset>}
self.units = {} # dict of {nane: set<Unit>}

A Dat aset Gr aph could be used to represent all of the content in a Dat aReposi t or y (including its parent repositories), but it can also be bounded in two
ways:

® |t may not contain all possible Uni t s (which would require some link attributes on included Units to be None).
® |t may not contain all possible Dat aset s (which just makes some set attributes smaller).

However, a well-formed Dat aset Gr aph may not have any Dat aset s with Uni t attributes set to None.

A Dat aset Gr aph can also be used to represent a superset of the contents of a Dat aReposi t or y: new datasets can be added to represent outputs that
have not yet been generated.

As a result, the right Dat aset Gr aph represents everything def i neQuant a needs: given a Dat aset G- aph that is bounded to the intersection of the
input and output data ID expressions, def i neQuant a can iterate over its input datasets and add instances of its output dataset to the graph, using the link
attributes to form groups between related datasets and build Quanta. This also works for a collection of SuperTasks in a Super TaskConposi t e: we can
iterate forward (i.e. the same direction as processing flow) through the Super Tasks, adding new output datasets. Because the Dat aset Gr aph is
bounded by both the input and output data ID expressions, no Quanta for unnecessary outputs will be generated. We thus propose the following
signatures for Super Task's core methods:

cl ass Quantum

def __init__(self, inputs, outputs):
"""Construct fromdicts of input and output datasets.

Par anmet er s
inputs : dict of {nane: set<Dataset>}

Al'l inputs used by a single invocation of a SuperTask.
outputs : dict of {nane: set<Dataset>}

Al'l outputs produced by a single invocation of a SuperTask.
sel f.inputs = inputs
sel f.outputs = outputs

cl ass Super Task:

def defineQuanta(self, datasets):
"""Return a list of Quantum objects representing the inputs and outputs
of a single invocation of runQuantun().

Par anmet er s

datasets : Dataset Graph
A Dat aset Graph containing only Units matching the data |ID
expression supplied by the user and Datasets that should be
present in the repository when all previous SuperTasks in the sanme
pi pel i ne have been run. Any Datasets produced by this SuperTask
shoul d be added to the graph on return.

rai se Not | npl entedError()

def runQuantum(sel f, quantum butler):
"""Run the SuperTask on the inputs and outputs defined by the given
Quantum retrieving inputs and witing outputs using a Butler.

rai se Notlnpl entedError()

def getDat aset O asses(sel f):
"""Return a dict containing all of the concrete Dataset classes used
by this SuperTask.
result = {}
for fieldNane in self.config:
cls = getattr(self.Configd ass, fiel dNane)
if subclass(cls, DatasetField):
p = getattr(self.config, fieldNanme)
resul t[p. nane] = p.type
return result

def getUnitd asses(self):
"""Return a dict containing all of the concrete Unit classes used
by this SuperTask.

result = {}
for DatasetC ass in self.getDatasetC asses().values():
for UnitC ass in Datasetd ass. Unitd asses:
result[UnitCl ass. nane] = Unitd ass
return result

The get Dat aset Cl asses and get Uni t Cl asses methods provide introspection into the Dat aset and Uni t types used by the Super Task. The
implementations above assume a Dat aset Fi el d (inherits from pex. confi g. Fi el d) is used in the Super Task's config class to define each of its input
and output datasets. A sketch of Dat aset Fi el d itself is attached (but it may require a familiarity with pex. conf i g and Python metaprogramming with
descriptors to understand).

These interfaces have a few more advantages over the baseline interface in terms of what they demand from Butler:

® We do not require a But | er at all in def i neQuant a, which means it is not strictly necessary for each activator to be able to construct a "pre-
flight Butler" at all when the pre-flight environment is significantly different from the job execution environment.
® The only methods we need on a job execution But | er are get (dat aset) and put (val ue, dataset).

Given a Super TaskConposi t e, a PreFl i ght Acti vat or will be able to inspect the constituent Super Tasks to build a list of all Dat aset types used
by the composite, and from that, it can build a list of all Uni t s used by the composite. This provides one kind of bound on the Dat aset Gr aph: the set of U
ni t types and and Dat aset types that will be included (and by extension, which Uni t link attributes will be permitted to be None). The much harder
bound is the one values of the actual Unit instances present, which must be formed by intersecting the input and output data ID expressions. That was in
many respects the hardest problem in the old design, and it remains the hardest problem in this one; all we have accomplished thus far is redefining it as a
handshake between the Uni t hierarchy and the But | er, rather than a handshake between the Super TaskConposi t e and the But | er. But this is not
an insignificant improvement, because the Uni t hierarchy contains ~8 explicit relevant classes with well-defined relationships and the set of possible Supe
r Tasks is (like the set of Dat aset s) explicitly dynamic.

https://confluence.lsstcorp.org/download/attachments/56690378/DatasetField.py?version=1&modificationDate=1493982005000&api=v2

	Data Units and Graph-Based Inputs to defineQuanta

