
Data Units and Graph-Based Inputs to defineQuanta
This page is a design proposal to address the problems in the baseline noted in the last section of SuperTask SuperTask Status: Science Pipelines

. In this design, we replace the camera-dependent dictionary data IDs currently used by the Butler with a more structured set of classes that Perspective
are camera-independent. Camera-specific data ID keys will still be relevant in the user-provided expressions that describe that output datasets should be
produced and what input datasets should be considered, but these expressions will be explicitly transformed into to a new data structure containing only
camera-independent classes before they come into contact with any .SuperTask

Units and Datasets
A is a conceptually similar to a data ID key (i.e. "visit", "ccd", "patch"), and a particular unit may (for some cameras) map exactly to an existing data Unit
ID key. Units, however, are considered to be generically important quantities from an algorithmic perspective, and hence they are camera-generic. A
Dataset is analogous to a combination of a and its data ID; a Dataset class corresponds to a , while an instance adds a tuple datasetType datasetType
of instances that represent the data ID in a camera-independent way.Unit

In code, is an abstract base class that holds an immutable unique identifier whose type is defined by the subclass, such as an integer ID for visits, a Unit
tuple of integers for patches, or a string name for filters. The actual types and values of these IDs are unimportant, and may in fact be camera-dependent,
as long as the values are globally unique identifiers within a camera. A also holds a dictionary of all the datasets that are defined on that unit (i.e. all Unit
of the for a particular visit), and has an abstract method that must be implemented by concrete derived classes. ProcessedVisitImages camera() Un

 subclasses define attributes that link one Unit to its related Unit instances (e.g. the visit that a sensor belongs to, and vice versa).it

The set of that may be used to define a is shown in the the diagram below. Some of these classes (with italics) are themselves all Units Dataset
abstract, and need to be subclassed in an obs package to create a concrete Unit class. Only the and classes are used directly TractUnit PatchUnit
by all cameras. and may interact only with the classes defined here, however; per-camera specializations will be used only to Datasets SuperTasks
make globally-unique identifiers and to map to the per-camera keys we use in data IDs today. Units It is, of course, quite likely that I've actually missed
one or two important kinds of Unit, but it's highly unlikely that number is > 5, and the important point is that the set of all Unit types is itself an important
part of this abstraction.

Some inherit from the intermediate base class , which represents a Unit that occupies a specific area on the sky. It holds a Units SpatialUnit
conservative (inclusive) approximation of that region as an attribute (probably something like a in a particular pixelization), and a sphgeom.RangeSet dicti

. Like the other link attributes, this dict may be empty or have some possible onary linking it to all of the SpatialUnits whose regions overlap its own
relationships missing.

The diagram below only attempts to show a few examples of concrete . Unlike the set of all types, the set of all types is very Datasets Unit Dataset
much dynamic: some may be defined only when a is configured; the input and output datasets of a will typically be Datasets SuperTask SuperTask
defined by a special field that has a user-configurable name and a SuperTask-defined set of units. It may even be better to not define a pex_config
separate derived type for every , and instead have a single flexible data structure with e.g. overloading for attributes that allow it to Dataset __getattr__
be used for any ; I consider that an implementation detail. I think it's easier for the conceptual discussion to think of them as classes.Dataset

DatasetGraph and the new SuperTask signatures
Because of the links between them, a set of related and instances naturally forms a graph-like structure. We define the Unit Dataset DatasetGraph
class as a top-level entry point to that graph:

https://confluence.lsstcorp.org/display/DM/SuperTask+Status%3A+Science+Pipelines+Perspective
https://confluence.lsstcorp.org/display/DM/SuperTask+Status%3A+Science+Pipelines+Perspective

class DatasetGraph:

 def __init__(self):
 self.datasets = {} # dict of {name: set<Dataset>}
 self.units = {} # dict of {name: set<Unit>}

A could be used to represent all of the content in a (including its parent repositories), but it can also be bounded in two DatasetGraph DataRepository
ways:

It may not contain all possible (which would require some link attributes on included Units to be None).Units
It may not contain all possible (which just makes some set attributes smaller).Datasets

However, a well-formed may not have any with attributes set to .DatasetGraph Datasets Unit None

A can also be used to represent a superset of the contents of a : new datasets can be added to represent outputs that DatasetGraph DataRepository
have not yet been generated.

As a result, the right represents everything needs: given a that is bounded to the intersection of the DatasetGraph defineQuanta DatasetGraph
input and output data ID expressions, can iterate over its input datasets and add instances of its output dataset to the graph, using the link defineQuanta
attributes to form groups between related datasets and build Quanta. This also works for a collection of SuperTasks in a : we can SuperTaskComposite
iterate forward (i.e. the same direction as processing flow) through the , adding new output datasets.SuperTasks Because the is DatasetGraph

 bounded by both the input and output data ID expressions, no Quanta for unnecessary outputs will be generated. We thus propose the following
signatures for 's core methods:SuperTask

class Quantum:

 def __init__(self, inputs, outputs):
 """Construct from dicts of input and output datasets.

 Parameters

 inputs : dict of {name: set<Dataset>}
 All inputs used by a single invocation of a SuperTask.
 outputs : dict of {name: set<Dataset>}
 All outputs produced by a single invocation of a SuperTask.
 """
 self.inputs = inputs
 self.outputs = outputs

class SuperTask:

 def defineQuanta(self, datasets):
 """Return a list of Quantum objects representing the inputs and outputs
 of a single invocation of runQuantum().

 Parameters

 datasets : DatasetGraph
 A DatasetGraph containing only Units matching the data ID
 expression supplied by the user and Datasets that should be
 present in the repository when all previous SuperTasks in the same
 pipeline have been run. Any Datasets produced by this SuperTask
 should be added to the graph on return.

 """
 raise NotImplentedError()

 def runQuantum(self, quantum, butler):
 """Run the SuperTask on the inputs and outputs defined by the given
 Quantum, retrieving inputs and writing outputs using a Butler.
 """
 raise NotImplentedError()

 def getDatasetClasses(self):
 """Return a dict containing all of the concrete Dataset classes used
 by this SuperTask.
 """
 result = {}
 for fieldName in self.config:
 cls = getattr(self.ConfigClass, fieldName)
 if subclass(cls, DatasetField):
 p = getattr(self.config, fieldName)
 result[p.name] = p.type
 return result

 def getUnitClasses(self):
 """Return a dict containing all of the concrete Unit classes used
 by this SuperTask.
 """
 result = {}
 for DatasetClass in self.getDatasetClasses().values():
 for UnitClass in DatasetClass.UnitClasses:
 result[UnitClass.name] = UnitClass
 return result

The and methods provide introspection into the and types used by the . The getDatasetClasses getUnitClasses Dataset Unit SuperTask
implementations above assume a (inherits from) is used in the 's config class to define each of its input DatasetField pex.config.Field SuperTask
and output datasets. A sketch of itself is (but it may require a familiarity with and Python metaprogramming with DatasetField attached pex.config
descriptors to understand).

These interfaces have a few more advantages over the baseline interface in terms of what they demand from Butler:

We do not require a at all in , which means it is not strictly necessary for each activator to be able to construct a "pre-Butler defineQuanta
flight Butler" at all when the pre-flight environment is significantly different from the job execution environment.
The only methods we need on a job execution are and .Butler get(dataset) put(value, dataset)

Given a , a SuperTaskComposite PreFlightActivator will be able to inspect the constituent SuperTasks to build a list of all Dataset types used
, and from that, it can build a list of all used by the composite. This provides one kind of bound on the : the set of by the composite Units DatasetGraph U

 types and and types that will be included (and by extension, which link attributes will be permitted to be). The much harder nit Dataset Unit None
bound is the one values of the actual Unit instances present, which must be formed by intersecting the input and output data ID expressions. That was in
many respects the hardest problem in the old design, and it remains the hardest problem in this one; all we have accomplished thus far is redefining it as a
handshake between the hierarchy and the , rather than a handshake between the and the . But this is not Unit Butler SuperTaskComposite Butler
an insignificant improvement, because the hierarchy contains ~8 explicit relevant classes with well-defined relationships and the set of possible Unit Supe

 is (like the set of) explicitly dynamic.rTasks Datasets

https://confluence.lsstcorp.org/download/attachments/56690378/DatasetField.py?version=1&modificationDate=1493982005000&api=v2

	Data Units and Graph-Based Inputs to defineQuanta

