
bt: A build tool for LSST code

Goals:

Enable the developer to easily bootstrap the development environment by downloading all the code necessary to build a specific package
Enable the developer to easily download and build the code for a ticket they're reviewing
Enable a tester to easily download and build the code they've been asked to test
Enable the developer to rebuild a set of packages from source, given a list (a manifest) of how they've been built before
Provide interface to buildbot to do periodic and on-demand builds
Enable automated builds and tagging of release branches

Example workflows for the build tool

Initializing the build directory (the directory into which the repositories will be cloned to)
bt init

Configuring the build directory
bt config upstream.pattern <pattern list> # where to find the git repositories (now
known as REPOSITORY_PATTERN)
bt config exclusions <filename> # list of exclusion regexes,
when following the dependency chain
bt config versiondb.url <versiondb repository url> # URL of the version database (mapping between
(product,version,deps_versions) -> +N suffix)
bt config versiondb.writable <true|false> # Whether versiondb is read only or writable
as well (ro is the default, only the CI system can write)
bt config build.prefix <string> # EUPS build tag prefix
(defaults to username if unspecified)

... or do the config using a remote config file
bt init --config http://....

Cloning all repositories required to build lsst_devel and lsst_sims products
and their master. bt remembers that lsst_devel and lsst_sims are top-level products.
bt build builds the remembered top-level products (and their dependencies)
bt pull lsst_devel lsst_sims
bt build

Cloning/pulling like above, but checking out tickets/DM-1234 (if it exists, falling back to master otherwise)
[note: if no repositories are specified on the command line, bt pull will pull the remembered ones]
bt pull --ref tickets/DM-1234
bt build

Continuing a build after a code change (say, after a build failure)
The -a flag tells build to recompute versions (otherwise it will refuse to build a "dirty"
tree -- "dirty" compared to the state just after pull)
bt build
... build fails ...
... chdir, edit, commit, push, etc ...
bt build -a

Clone/pull given a build manifest. Build manifest is a text file of products,SHA1,version,dependencies tuples.
This allows one to reproduce a build someone else made (with bt).
bt pull --manifest manifest.txt
bt build

Push changes to all repositories (top-level + dependences)
bt push

Create a branch in all repositories
bt branch release/8.1.0

Tag all repositories (matching tag.pattern config parameter)
bt tag 8.1.0.0

Increment version tag on all repositories matching tag.pattern. The goal is to allow simple increments of .W
releases

on release branches.
#
For each repository, this will:
* check if there's an annotated tag on HEAD. If yes, continue to next repository.
* Find the closest tag in history. If the tag prefix matches the version part of the
branch name (e.g., in release/8.1.0, that would be 8.1.0), split off any remaining
integer <N> from the end (e.g., if the tag is 8.1.0.5, N=5). Otherwise, see if the
tag matches <prefix>-<version>.N (e.g., a tag 1.3.4-8.1.0.7 would match this
pattern, with N=7). Otherwise, assume <prefix>==tag, and N=-1
* Increment N by one (check for tag collisions, increment further if necessary).
Construct new tag using prefix, version, and N.
#
The algorithm above is designed to tag LSST repositories with dotted-quad tags, while
external packages with LSST patches will be tagged as <their_version>-<lsst_version>.
#
bt tag --increment

#
Usage by the CI system
#

Automated daily & triggered builds
bt pull && bt build # build
master
bt pull --ref tickets/DM-1234 && bt build # build tickets/DM-1234, reverting to
master if unavailable
bt pull --ref tickets/DM-1234 --ref next && bt build # build tickets/DM-1234, reverting to next,
reverting to master

... or, with some syntactic sugar:
bt build --ref tickets/DM-1234 --ref next

Automated builds of release branches
These are different in that we wish them to be tagged before they're built
bt pull --ref release/8.1.0
bt tag --increment # the default increment prefixes will
be taken from the current branch name
bt push
bt build -a

... or, with some syntactic sugar:
bt build --ref release/8.1.0 --tag-increment

	bt: A build tool for LSST code

