
Science Pipelines Doc Sprint 2016-12

Date

07 Dec 2016

Attendees

Jonathan Sick
Simon Krughoff
John Swinbank
Unknown User (mssgill)

Goals

This is a design sprint to kick off the LSST Science Pipelines documentation reboot. Our goal is to a create a tangible vision of what the Science Pipelines
documentation will be. Questions we want to answer are:

Who are the users of Science Pipelines documentation? What does each group want to get out of the Science Pipelines and its documentation?
Do those needs conflict? Do we need to prioritize one user group in the initial implementation?
What are the boundaries of the Science Pipelines documentation (the site at What are adjacent documentation projects https://pipelines.lsst.io)?
that the Science Pipelines documentation might link against?
What's the curriculum for learning the Science Pipelines? What are the concepts that the Science Pipelines documentation site needs to cover?
How are these concepts organized (hierarchically or as a bottom-up information network). Do different types of users need specific entry points
into the documentation and Science Pipelines itself?
What kinds of content are we going to be producing? What do the templates of these topic types look likes?
How are concepts unique to Science Pipelines, like tasks and command line tasks, documented in both a code and information architecture
sense?

Intended Sprint Products

These are suggested products and outcomes from the sprint:

A map of the science pipelines site. This map should resolve into individual HTML/reStructuredText documents (topics in Every Page is Page
 terminology). Each topic should be annotated with:One

Topic name.
Content purpose and scope.
Topic type (i.e., template).
Adjacent topics (topics that link into this page; topics this page will link out to).

Topic types and templates. Each template shapes how different types of topics are written. Examples can be: API reference, task, command
line task, tutorial project, conceptual overview, recipe. See Chapter 9: EPPO Topics Conform to a Type.Every Page is Page One
Timelines. Timeline for content and for .documentation infrastructure

Prep Work/Background Reading Material

Read Every Page is Page One.
Jonathan Sick's "Pipelines Documentation Site Organization Sketch" is .on clo
LDM-493: Data Management Documentation Architecture.
Potentially relevant design docs, which may be cross-referenced with or otherwise relate to Science Pipelines docs:

LDM-151 (DM Applications Design)
LSE-163 (Data Products Definition Document)

validate-base documentation
Astropy documentation

Meeting Logistics

Tuesday December 6: campfire chat at Bentley's or elsewhere.
Wednesday December 7. 9:00 am to 5:00 pm. LSST Workroom.
Thursday December 8. 9:00 am to 5:00 pm. LSST Workroom.
Friday December 9. 9:00 am to 5:00 pm (or as participants depart). LSST Workroom.

Discussion items

Time Item Who Notes

https://confluence.lsstcorp.org/display/~jsick
https://confluence.lsstcorp.org/display/~krughoff
https://confluence.lsstcorp.org/display/~swinbank
https://confluence.lsstcorp.org/display/~mssgill
https://pipelines.lsst.io
http://everypageispageone.com/the-book/
https://confluence.lsstcorp.org/display/~jsick
https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1
https://ldm-493.lsst.io/v/v1/index.html
https://ldm-151.lsst.io/v/draft/
https://lse-163.lsst.io/
https://validate-base.lsst.io
http://docs.astropy.org/en/stable/

 What is the scope of the
"Science Pipelines"
documentation site?

Note that important
obs packages are
outside lsst_distrib;
omitting the obs
packages would
reduce the current
usability of the
Pipelines
documentation.

Technical constraint: tightly coupled packages should be documented together since docs will be versioned tightly
with the codebase (docs embedded in Git; also known as 'docs as code'). This is an LSST the Docs feature:
https://sqr-006.lsst.io.
We agreed that a lot of middleware (things beyond Princeton and UW) should be included in pipelines.lsst.io
because of the tight API integration, including:

task/supertask framework
butler
logging
display packages

Example: document the Butler API in pipelines.lsst.io, but document the DAX service elsewhere.
Butler is an API that has implementations for different backends.
Document implementations to each backend.
Doc how to write an implementation.

Example: document the Firefly display package in pipelines.lsst.io, but document Firefly itself elsewhere.
There is a list of obs packages that will be supported. These will be included in pipelines.lsst.io.
lsst.validate packages will be in pipelines.lsst.io.
Can all packages in the lsst Python namespace be thought of as pipelines.lsst.io (excluding simulations).? Is
pipelines.lsst.io effectively the documentation for the "lsst" python package?
Think of pipelines.lsst.io as documentation for the open source project that might be used in other contexts
besides LSST AP and DRP pipelines (other observatories, building L3 data products). Data release
documentation will specify exactly how the Science Pipelines were used to build a data release.

Boundary between
Pipelines docs and the
Developer Guide

Should the pipelines
documentation cover
developer and build-
oriented topics currently
in the DM Developer
Guide? Do pipelines
users need to be able to
create Stack packages to
make Level 3 data
products?

lsstsw and lsst-build
Structure of Stack
packages (including
sconsUtils and
EUPS details)
etc?

developer.lsst.io is intended to define policies and practices specific to DM staff. We can't use it as documentation
to end users.
If the build and packaging system are described in pipelines.lsst.io, it could be awkward for other software
projects, like Qserv and Sims, that also depend on EUPS/sconsUtils/lsst-build/lsstsw, etc..
However, putting build/packaging documentation in pipelines.lsst.io probably makes the most sense for
astronomers extending the stack. pipelines.lsst.io is already where astronomers will look to learn how to write new
packages against the Pipelines API. Overall, we can just learn that pipelines.lsst.io is where build and packaging
is fundamentally documented.

 Science Pipelines docs
and LDM-151

LDM-151 is where we're designing and planning the stack.
Eventually it will grow to say what the Stack is.
pipelines.lsst.io will also say what the Stack is.
LDM-151 is change controlled: not continuously deployed like the Stack documentation.
What if LDM-151 is kept as a record of the Stack used for reviews and related communities? And most users only
use pipelines.lsst.io?
This needs to be discussed by DM/TCT leadership.
Existing proposal: (suggests that https://ldm-493.lsst.io/v/v1/index.html#change-controlled-design-documents
content is transplanted and single sourced in design docs).

https://ldm-493.lsst.io/v/v1/index.html#change-controlled-design-documents

 Who are our users?

What user group
should be
prioritized?
What are common
activities that this
group wants to
achieve? What
documentation will
assist with that?
Where do the needs
of different groups
overlap?

DM developers in construction

Need API references most.
Currently learn APIs by introspection or reading the source and code that uses an API. Doxygen isn't useful.
Descriptions of how tasks fit together (both API-wise, and higher-level concepts; even LDM-151-level).
Examples to help us develop one package given lower level APIs.
Run tasks for validating processing; run on verification clusters.
DM is the biggest consumer of pipelines.lsst.io.

Construction-era science collaborations (sims users?)
Currently consumers of Sims (MAF).
Many won't contribute to the pipelines stack.
May want to give feedback. Need algorithmic descriptions.

DESC
Running real imaging data now with the stack
Want to contribute feedback (knowledge). E.g. on algorithms.
Want to contribute packages. E.g. twinkles.
Want to implement a measurement algorithm and compare against the performance of factory algorithms.
Need:

developer docs (to support development)
algorithm background (to comment on)
how to run pipelines on their own infrastructure.

LSST operators/scientists in operations
DRP may want an internal ops guide (out of scope)
Science directorate will have similar needs to DM developers now.

'DataSpace' users in operations
SDSS experience: Small queries to subset data. Complex queries to get objects of interest. Use cut-out
service to give context to catalogs.
Will want to run tasks on a subset of image data. Customize our algorithms.
Use Butler to get/put datasets within their storage quota .
Develop and test algorithms that may be proposed for incorporation in DRP.

Other observatories/surveys

Summary

DM developer needs generally match the needs of all other groups, possibly with the exception of some
conceptual framing documentation. DM will be API oriented, whereas new users will need more conceptual docs.
Need priorities, still.

 EUPS Packages as
units of organization

It's natural to
organize
documentation (to
some extent)
according to units of
EUPS packages,
given that doc
content should live
with code. Should
every EUPS
package have a
topic page and be
linked from the
homepage (like the
astropy docs do for
sub-packages)? Are
there exceptions
where
documentation that
may live in an EUPS
package should
actually be
organized altogether
independently of
EUPS package
structure?
What should typical
in-package
documentation look
like? See https://vali

 as a date-drp.lsst.io
prototype, and https:/
/docs.astropy.org in
general.
To what extent
should
documentation refer
to EUPS packages
(e.g., afw) versus
Python namespaces
(lsst.afw)?

Document at the level of the Python module. e.g. afw.image, afw.table, pipe.base, not necessarily at the Git
repository level.
Docs live inside packages and package docs can be built locally and independently of the full pipelines.lsst.io site.
However, the pipelines.lsst.io homepage can arrange docs for modules into topical groupings.

https://validate-drp.lsst.io
https://validate-drp.lsst.io
https://docs.astropy.og
https://docs.astropy.og
https://docs.astropy.org
https://docs.astropy.og
https://docs.astropy.og

 What is the structure of
the documentation
homepage?

The homepage is
important for
orienting users. The
structure of the
homepage should
present a coherent
vision for what the
Science Pipelines
are and how they're
used.
See also https://com
munity.lsst.org/t
/pipelines-
documentation-site-
organization-sketch

 and LDM-/1088/1
151

Frameworks.

obs
meas.
modelling.
tasks.
Butler/Data Access Framework.
Data structures
geometry
display
log
debug
validate
Build system

Twinkles workflow.

Homepage structure.

https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1
https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1
https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1
https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1
https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1
https://community.lsst.org/t/pipelines-documentation-site-organization-sketch/1088/1

 Where should concepts
of science interest
(such as algorithm
details) be documented?

Docstrings of code
that implements
algorithms?
Tasks/Command
line task interface
references?
Concept topics that
then introduce task
/API references?
To what extent are
LSST design
documents (e.g.,
LDM-151) cross-
linked and
referenced?

Algorithms don't match Python/C++ APIs 1:1. Indicates that algorithms should be described at a higher level.
Tasks might be the best home for algorithm documentation.
Need for higher-level overviews that describe "processing topics" that link to composed tasks.

 How should examples
and tutorials be
produced?

All tutorial and in-
text examples need
to be runnable.
How do we leverage
the example/
directories?
Should
documentation
pages essentially be
written as Jupyter
notebooks?

We need additional prototyping and design discussion before we identify a pattern for producing and testing examples
in documentation.

 How should C++/Python
API reference
documentation be
produced?

See https://communit
y.lsst.org/t
/documentation-and-
links-for-python-
wrapped-c-code-in-
sphinx/1392

There should be a small discussion between the pybind11 transition team and SQuaRE doc engineering to design
and choose a system.

 Listing topic types and
templates

What are all the
distinct of types
things we'll need to
document?
What should each
type of content look
like?

https://community.lsst.org/t/documentation-and-links-for-python-wrapped-c-code-in-sphinx/1392
https://community.lsst.org/t/documentation-and-links-for-python-wrapped-c-code-in-sphinx/1392
https://community.lsst.org/t/documentation-and-links-for-python-wrapped-c-code-in-sphinx/1392
https://community.lsst.org/t/documentation-and-links-for-python-wrapped-c-code-in-sphinx/1392
https://community.lsst.org/t/documentation-and-links-for-python-wrapped-c-code-in-sphinx/1392
https://community.lsst.org/t/documentation-and-links-for-python-wrapped-c-code-in-sphinx/1392

Preliminary listing.

Task topic type.

README topic type + GitHub summary line.

Measurement framework topic example

Butler framework topic example.

 Community.lsst.org and
the docs

Approach 1: use community.lsst.org as a draft for docs: see new content on the forum, write the docs, and then
post a link to that doc in the original topic. This is a culture and process problem.
Approach 2: auto-link to community.lsst.org topics from documentation pages. Can be done by looking for
Community topics that link to the documentation site, and by looking for certain watch words that are embedded in
the metadata of each reStructuredText page. DocEng will make this.

 Tagging command line
tasks

 We'll have lots of lists of command line tasks in two places: module topic pages and in processing context sections of
the home page.

On the homepage we'll want to curate topical groups. Given the small number of command line entrypoints this
can be maintained manually. Eventually we can add tag metadata to each task to support auto-generated lists
On module pages the command line task list can be alphabetical.

 Task configuration and re-
targetting

 Command line task topic
types vs task topic types

 Task framework documentation should document the philosophy of tasks vs command line tasks

One stance is that command line tasks are aggregations of tasks. The tasks are what contains algorithms, and is
where the algorithm should be documented.
However we discussed that the difference may not be meaningful and that tasks and command line tasks should
be documented together in a single topic type.

 Measurement extensions
listing

 We can look at the registry of measurement plugins (extensions)

 Important frameworks Important/interesting frameworks are the ones that span multiple modules

Butler
measurement
tasks

 Implementation plan

Homepage Outline

LSST Science Pipelines
Installation and setting up
Processing data: a tutorial
Release Notes
Community, and getting help
How to report issues
How to contribute

Processing Data

Data ingest

Overview
tutorials

Single Frame

Overview — what do we do in a single frame context. Then link to processCcd.
Tutorials

Coaddition

Overview topic
Tutorials

Difference imaging

Overview
Tutorial

Multi-epoch object characterization

Overview. E.g. https://lsst-web.ncsa.illinois.edu/doxygen/x_masterDoxyDoc/pipe_tasks_multi_band.html
Tutorial

Postprocessing

Overview(s)
tutorials
May need finer grained organization

Frameworks

Measurement framework
Butler framework
task framework
obs framework
modelling framework
geometry framework
validation framework
Build, packaging and utility framework

API modules

lsst.afw.image - Image data structures
...

In the beginning, this will be a single page that describes each measurement context and the main processing tasks that are done here.

The Processing Data section is and documents oriented around command line entrypoints (command line tasks or supertasks)
processing patterns and algorithmic considerations.

The sections are patterned around typical user pipelines and processing/measurement (single frames, coadds, difference imaging, contexts
and multi-epoch datasets). Contexts are slightly different from LDM-151 Section 5 headers. For example, we treat coaddition and difference
imaging as different contexts.

In each section, there will be:

Overview pages that provide a narrative to command line processing and algorithms.
Tutorials that illustrative command line tasks with realistic datasets.
Lists of command line tasks, linking to their reference pages. Command line task reference pages are hosted inside package
documentatation. Command line task reference pages also link to reference pages. Organize command line tasks between:task

processing data
measuring data

https://lsst-web.ncsa.illinois.edu/doxygen/x_masterDoxyDoc/pipe_tasks_multi_band.html

Module topic

lsst.module.name — Readable name
Context establishment paragraph.

Links to related modules, framework pages, and disambiguation.

Design/High Level Overview

If necessary?

Tasks

Listing of tasks (autogenerated; alphabetical)

Using the APIlsst.module.name

Links to API concept pages
If it has a C++/Python API

Python API reference

list of API object reference pages

C++ API reference

list of API object references pages

Packaging

Link to EUPS package/GitHub repository
Dependencies: auto-generated graph/list of EUPS dependencies

Related documentation

Linked design documents
Linked technotes
Linked papers
Linked Community conversations

http://lsst.module.name

Task topic type

TaskName
Summary/context (1 sentence).

Summary of logic/algorith in a paragaph and/or bullet list. Include a sentence about each step, which can be either a) retargetable sub-task, or b)
method within task.

Configuration

Document fields in associated config class
For subtasks, provide list of everything to which this could be retargeted.

Entrypoint

Link to API page for the "run" method

Butler Inputs

dataset type + description of Butler gets()
Best effort for now; hopefully auto-doc'd in SuperTask framework

Butler Outputs

dataset type + description of Butler puts()
Best effort for now; hopefully auto-doc'd in SuperTask framework

Examples

self-contained example of using this task that can be tested

Debugging

Debugging framework hooks

Algorithm details

Extended description with mathematical details

Measurement framework (example of a framework topic page)

Measurement Framework
Context sentence/short paragraph

Framework concepts

Overview
Measurement contexts
...
Style guide (rules for creating measurement plugins)

Tutorials

Simple tutorial for creating a measurement plugin.
Another tutorial with a more complicated aspect tutorial.
C++ based tutorial
...

Measurement plugins

a measurement plugin; linking to its class API
...

Modules

list of modules that build up the framework
...

Butler framework (example of a framework topic type)

Butler framework
Context sentence/short paragraph.

Framework concepts

Overview
Datasets
DataIds
Composite Datasets
What it does when I get() and put()

(there might be need for some concept pages that dive into internals)

Tutorials

...

Modules

...

README topic type

package_name
Desciption from summary line in bold weight.

This package is part of the LSST Science Pipelines: https://pipelines.lsst.io.

Join us at https://community.lsst.org.

Module Documentation

module homepage link
for each module in the package

GitHub summary line topic type

LSST Science Pipelines: Descriptive sentence.

https://pipelines.lsst.io

Command line tasks

IngestCatalogTask
IsrTask
MeasurementDebuggerTask
ProcessImageForcedTask
DeblendAndMeasureTask
BaseMeasureTask
DumpTaskMetadataTask
ReportImagesInPatchTask
ReportImagesToCoaddTask
ReportPatchesTask
ReportTaskTimingTask
Generating coadds:

AssembleCoaddTask
SafeClipAssembleCoaddTask

GetRepositoryDataTask
ImageDifferenceTask
MakeDiscreteSkyMapTask
MakeSkyMapTask
MockCoaddTask
Multi-band processing:

DetectCoaddSourcesTask
MergeSourcesTask
MeasureMergedCoaddSourcesTask

ProcessImageTask
RunTransformTaskBase
CoaddAnalysisTask
CompareAnalysisTask
ColorAnalysisTask
ctrl_pool middleware tasks:

BatchCmdLineTask
BatchPoolTask

ProcessCcdTask

More things to discuss/design

Task list topic types
Tutorials
Troubleshooting (when something goes wrong). -> integrate into task lists, and into task reference pages.

Engineering needs

Turn pipelines_docs into an EUPS package so it can use lsst.utils.getPackageDir rather than assuming that packages are in lsstsw
Integrate doc builds with sconsUtils

https://pipelines.lsst.io.
https://pipelines.lsst.io.
https://community.lsst.org.

Branch dashboard pages

Action items

	Science Pipelines Doc Sprint 2016-12

