
a.
b.

c.

d.

Git and STASH for Simulations

This is a revised version of Mario Juric's page on git and LSST from http://dev.lsstcorp.org/trac
/wiki/GitDemoAndTutorial

The central Stash repositories for Simulations can be found on (https://stash.lsstcorp.org/projects/SIM
to clone with write permissions you need to log in)

Access LSST code using git and Stash

Anonymous read-only access

To use the http protocol, do something like:

git clone https://stash.lsstcorp.org/scm/sim/maf.git

The above will clone the repository for MAF into the maf subdirectory of your current working directory.

Getting developer/write access

You will need to login to stash at the above address and do

git clone https://USERNAME@stash.lsstcorp.org/scm/sim/maf.git

There is a link on the stash page to enable you to clone the repo

LSST git workflow and branch management policy (DRAFT)

This workflow is based on github-flow .

Anything in the 'master' branch is deployable (== should alway runs). Developing directly on the master branch is forbidden.
Feature (and bugfix) development happens in branches. It is advisable to commit early and often to your branch. However, you always
should not merge the master into your feature branch unless you absolutely need some new feature that has been developed in the
master in the meantime. This prevents complex-looking commit histories.
When your feature is ready, issue a t (available on the stash interface) and assign reviewers. Some minor features may not pull reques
need a review.
A feature that passes code review is permitted to be merged into master. Merge it and GOTO 1.

git Tutorials to Read and/or Watch

git Reference -- read this first to get a high-level overview in 15 minutes
Learn.git series -- another git introduction, including screen-casts (note: I found the text somewhat more informative than the embedded

screencasts)
http://git-scm.com/course/svn.html -- git for svn users (but please, read the links above as well)
Pro git Book -- get to know git better (~2 hrs?)
Git Book -- similar to Pro git Book, bit more comprehensive

Useful git tips -- some useful less well known tips

Understanding git (by mjuric)

An explanation of how to think about git and how it internally does things. Also discusses merging and fast-forwards. Note that most of this is
covered in the tutorials above, but if you're still confused, try reading it.

All you need to know to get started (by RHL)

DVCSes (git, hg, bzr, darcs, ...)

http://dev.lsstcorp.org/trac/wiki/GitDemoAndTutorial
http://dev.lsstcorp.org/trac/wiki/GitDemoAndTutorial
https://stash.lsstcorp.org/projects/SIM
https://stash.lsstcorp.org/scm/sim/maf.git
https://ajc@stash.lsstcorp.org/scm/sim/maf.git
http://scottchacon.com/2011/08/31/github-flow.html
http://gitref.org/index.html
http://learn.github.com/p/intro.html
http://git-scm.com/course/svn.html
http://progit.org/book/
http://book.git-scm.com/
http://mislav.uniqpath.com/2010/07/git-tips/
https://dev.lsstcorp.org/trac/wiki/UnderstandingGit

 working files
 |
 | add (not hg; explicit step in git (or commit -a))
 \|/
 v
 Files that I want to commit
 ^
 /|\
 |
 | commit/update
 |
 \|/
 v
 Local repo <-- pull/push --> Remote repo

CVS/SVN/Perforce/etc.:

 working files _
 |\
 \
 \
 \
 \

 |
 | commit/update
 \|/
 v
 Remote repo

git Crash Course

Starting up

git config --global user.name "Firstname Lastname" # Configure your name; this will appear in
commits
git config --global user.email "your_email@youremail.com" # Configure you e-mail; this will appear in
commits
git config --global color.ui true # Use colors if terminal is capable
git config --global push.default tracking # Make 'git push' push only the current
branch, and not all of them (see the FAQ)

Find more defaults to play with . You may also be interested in (note: this comes packaged with git in some distributions).here bash completion script

Cloning an existing project

git clone # Clone out MAF project to maf directoryhttps://USERNAME@stash.lsstcorp.org/scm/sim/maf.git

cd maf

Adding a new file

echo '# New build system!' > CMakeList.txt

git status # See the status of files in the working directory

git status -s # The same in format familiar to SVN users

git add CMakeList.txt # Add a new file to be tracked by git

git status

git commit # Commit the changes (the file addition) git log

Editing a file and committing the changes

echo '#more stuff' >> CMakeList.txt # Change the file

 git status # See that the file is now "dirty"

 git diff # See the changes
 git commit -a # Commit all changes (don't forget the -a!)

Viewing the commit tree

http://book.git-scm.com/5_customizing_git.html
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/completion/git-completion.bash;hb=HEAD
https://ajc@stash.lsstcorp.org/scm/sim/maf.git

 git log # see the new state
 git log --stat # also see what has changed
 gitk # graphical tool
 gitx # another graphical tool (OS X)

Amending a commit

 git commit --amend # Use it to change the most recent commit message (and more)

Pushing upstream

git status # Note that it says the branch is ahead of origin/master by two commits

git push # This makes the changes available to everyone (they become a part of official LSST code history)

Branches

Creating

 git branch # View what branch we're on
 git branch feature/OPSIM-221 # Create a new branch named 'tickets/9999'
 git branch # Note that the current branch has not changed
 git checkout feature/OPSIM-221 # Check out the new branch (like 'svn switch')
 git branch

 or, you can do it in one line:

 git checkout -b feature/OPSIM-221 HEAD # Check out HEAD into a newly created branch 'tickets/....' and
switch to it

Adding a file

 echo "// still empty" > ExtendedSources.py
 git add ExtendedSources.py
 git commit
 git log

Switching branches

 ls -lrt src/image/ # Note the file is there
 git checkout master # Switch to branch 'master'
 ls -lrt src/image/ # Note the file is gone

Listing which branches are available

 git branch # List local branches
 git branch -r # List remote branches
 git branch -a # List all branches (both local and remote)

Making your branches available to others

 git push -u origin feature/OPSIM-221 # Push branch feature/..... to remote repository 'origin', and set it up
so we can pull from the remote branch in the future (-u)

 Use "git pull --rebase" instead of just "git pull" when working on a branch with someone else; this will avoid unnecessary merge commits without
rewriting any history that has already been pushed.

Checking out and tracking an existing branch from an upstream repository

 git fetch # make sure we're in-sync with remote repositories
 git checkout -t origin/feature/OPSIM-221 # Checks out the branch 'feature/OPSIM-221' from remote repository
'origin' into a local tracking branch of the same name

 # Note: newer versions of git allow just 'git checkout 'feature/OPSIM-221'

 or

 git fetch
 git checkout -t -b fit origin/feature/OPSIM-221 # Checks out 'feature/OPSIM-221' from remote 'origin'
into a local tracking branch named 'fit'

Listing commits on a branch

 git log origin/master..origin/feature/OPSIM-221 # Lists commits reachable from 'feature/OPSIM-221'

 # that are not reachable from master
 # (i.e. excludes any commits merged to the
 # feature from master)
 git diff origin/master...origin/feature/OPSIM-221 # Displays differences caused by the above

 # commits. ***NOTE*** that there are *three*
 # dots in this syntax, which is unique to
 # "git diff".

Merging

 git checkout master # ensure we're on master
 git pull # ensure we're up-to-date
 git merge --no-ff feature/OPSIM-221 # Merge the feature/OPSIM-221 branch

 ls -lrt src/image/ # Note the new file is here
 git log # Show the merge commit
 git log --graph # This is better
 git push # Upload changes to main LSST repo

Tagging

 git tag -a 5.0.0.0 # Create an annotated tag (a tag with a message)

 or

 git tag -s 5.0.0.0 # Create a gpg-signed tag

You can use -m MSG with -a to save starting an editor. you must use -a or -s otherwise git describe will ignore your tag.N.b

Then

 git log --graph --decorate # See the tag you just made
 git push --tags # Push all your tags upstream

Oops, I should have done that on a ticket branch

Adpted from http://schacon.github.com/git/git-reset.html

I thought it was going to be a tiny bug-fix that I could commit straight to master but it grew into something that should be done on a ticket: (This is for
when you have already git committed the changes, but not git pushed them.)

 $ git checkout master
 Already on 'master'
 Your branch is ahead of 'origin/master' by 5 commits.

(Remember that number :)5

If you're making a new ticket for this fix,

 $ git branch feature/OPSIM-221

 $ git reset --hard HEAD~5
 $ git checkout feature/OPSIM-221

 and keep working as usual.

 If you want to apply your commits to an existing ticket branch,

 $ git branch temp
 $ git reset --hard HEAD~5
 $ git checkout feature/OPSIM-221

 $ git merge temp

 $ git branch -d temp

 (but this will also merge all other commits to master into your ticket branch).

Some useful command-line prompt hacking

git is distributed with a shell script, contrib/completion/git-prompt.sh, that defines a function, __git_ps1 that's useful for displaying the branch and
status of a git repository in your command-line prompt. This file seems to be generally installed by distributors, and so you probably already
have __git_ps1 defined in your environment. If not, grab that shell script and source it. If you can't get it, or don't want it, then a poor-man's version
is supplied, below.

http://schacon.github.com/git/git-reset.html

The behaviour of __git_ps1 is configurable with the following environment variables: GIT_PS1_SHOWDIRTYSTATE (define to non-empty value;
then * indicates unstaged changes and + indicates staged changes), GIT_PS1_SHOWSTASHSTATE (define to non-empty value; then $ indicates
non-empty stash), GIT_PS1_SHOWUNTRACKEDFILES (define to non-empty value; then $ indicates the presence of untracked files)
and GIT_PS1_SHOWUPSTREAM (define as auto; then < indicates you're behind the upstream and can merge, > indicates you're ahead of the
upstream and can push, <> indicates you've diverged, and =indicates there's no difference).

The result is something like:

 user@machine:~/LSST/afw (tickets/1234>) $

(i.e., I'm on branch tickets/1234 with changes committed that I can push) but all you have to do is add $(__git_ps1) at the desired location in your
current PS1 definition.

So, here's what I use:

 # The following two functions provide a basic alternative for git.git/contrib/completion/git-prompt.sh
 # in case it's not available
 function prompt_git_dirty {
 local gitstat=`git status 2> /dev/null`
 local charstat=""
 [[-z $(echo $gitstat | grep "nothing to commit")]] && charstat="\%"
 [[-n $(echo $gitstat | grep "Your branch and '.*' have diverged")]] && echo "${charstat}\<\>" && return
 [[-n $(echo $gitstat | grep 'Your branch is ahead of')]] && echo "${charstat}\>" && return
 [[-n $(echo $gitstat | grep 'Your branch is behind')]] && echo "${charstat}\<" && return
 echo $charstat
 }
 function prompt_git_branch {
 git branch --no-color 2> /dev/null | sed -e '/^[^*]/d' -e "s/* \(.*\)/[\1$(prompt_git_dirty)]/"
 }

 # Setup for git.git/contrib/completion/git-prompt.sh
 export GIT_PS1_SHOWDIRTYSTATE=1
 export GIT_PS1_SHOWSTASHSTATE=1
 export GIT_PS1_SHOWUNTRACKEDFILES=1
 export GIT_PS1_SHOWUPSTREAM="auto"
 type __git_ps1 1>/dev/null 2>&1 || alias __git_ps1=prompt_git_branch

 PS1='\[\e[1;32m\]\u@\h\[\e[0;39m\]:\[\e[1;34m\]\w\[\e[1;31m\]$(__git_ps1)\[\e[0;1m\] \$ \[\e[0;39m\]'

F.A.Q.

What is the difference between and ?git commit git commit -a

See , that I didn't find until I wrote the text below (sigh)...this great explanation here

Committing changes to a git repository is a two-step process:

Step 1: specify which of the (possibly many) modified files would you like to commit as a part of this change set
Step 2: execute the commit.

The two above steps equate to the following commands:

Step 1: git add modifiedFile1.cc modifiedFile2.cc modifiedFile3.cc ...
Step 2: git commit

Most version control systems (including SVN and hg) omit Step 1. and always assume you want to commit files that have been modified. Git is all
not as presumptuous, because there are sometimes good reasons why you'd want to split the modifications into two different commits (e.g., if
you've modified 10 files while developing a new feature, while the one-line modification in the 11th file was an unrelated bug that you stumbled upon
and fixed in the process). Now, what if you want to commit changes to all modified files (or if you're used to SVN behavior and see no point in do
extra typing)? Then use:

git commit -a

The '-a' switch tells git to run an implicit for all modified files in the working directory, before performing the commit.git add

How do I restore a file to unmodified state ?

 git checkout HEAD myfile.txt

The way to read this command is: 'Dear git, please check out from branch HEAD the file myfile.txt'. In git, HEAD always refers to the current branch.
You can probably already tell that if I wrote git checkout otherbranch myfile.txt git would check out the file from otherbranch. It's even more general
than that: instead of a branch name, you can give it any out of which to extract the file.tree-ish

What are best practices for developing on a branch?

http://whygitisbetterthanx.com/#the-staging-area
http://book.git-scm.com/4_git_treeishes.html

Often the features you're developing take a long time to mature. Therefore your feature branch (also sometimes called a "topic branch") may lag
behind master quite a lot by the time you're done. What should you do? Should you "sync up" often by merging 'master' into your feature branch, or
should you wait and fix any conflicts until the very end?

Junio Hamano has on this that is a MUST to read. To summarize:an excellent post

Merge your feature branch into the master only when it's complete (up to bugfixes).
Merge the master into your feature branch only when there's a new feature in master that the code in your branch needs to use

This strategy minimizes the number of merges in the history of the project, which helps with tools like 'git bisect' (automated finding of commits that
caused bugs/regressions). And if you're nervous about doing all the conflict resolution at the very end, look into .git rerere

What are 'cache', 'index', and 'staging area'?

To first (and second, and probably third) order, they're the same: the staging area where you place the files (using 'git add') that are to be a part of
the next commit. That there are three terms for one and the same thing is a .historical artefact

I'm having problems with 'git push' and 'non-fast-forward mege' errors

See if your question.this answers

How can I avoid stepping on people's toes when making changes?

See page on interacting with gits.this

http://gitster.livejournal.com/42247.html
http://progit.org/2010/03/08/rerere.html
http://gitster.livejournal.com/39629.html
https://dev.lsstcorp.org/trac/wiki/GitProblemsWithPush
https://dev.lsstcorp.org/trac/wiki/GitInteraction

	Git and STASH for Simulations

