
1.  
2.  

a.  

b.  

Set up Configuration Files using opsim3_config
Configuration Files

All of the benchmark configuration files are maintained in opsim3_config on github. The primary branches correspond to the set of configuration files for a 
particular benchmark run (denoted by its name).

You MUST have setup configuration files on the machine where you intend to run OpSim and specify that in --config=~/someplace to execute opsim.py.
Instead of thinking of sets of configuration files as subdirectories, think of them as "git commits"

Recommended

A machine with ssh keys set up for github to checkout opsim3_config, make and commit changes, push them to github.
A machine for simulation production

A directory for each benchmark run is created with and OpSim installation in /lsst/config (a separate git clone and git checkout is done to 
set up each)
A directory for checking out a read-only copy of the opsim3_conf repository is needed - the SHA of the commit for a particular set of 
config settings is specified. (e.g. ~/github/opsim3_config)

Setup Method 1: Batch execute all benchmark runs.

As part of the OpSim code installation each production machine has a copy of all the current baseline/tier1/neo config branches (e.g. in ). ops2:/lsst/config/
Each of these directories is a separate git clone of opsim3_config and has the branch indicated by the name of the subdirectory already checked out (a 
checked out branch is unique to the each subdirectory). This setup and is suitable for using to batch run a set of benchmark runs all at once without having 
to check out each branch and start the run in sequence.

If you want to create your own set of benchmark directories:

The github repository "opsim_production_tools" contains a script which generates all of the benchmark ("base" config) directories

 # clone the repository
 cd ~/github
 git clone /lsst-sims/opsim_production_tools.gitgit@github.com
 # then create set of directories, each of which is a git clone of all the base branches using config_maint
 ~/github/lsst-sims/opsim_production_tools/config_maint
 # valid switches are 
 -c, --create
 -u, --update
 --config-loc # wherever you want it if you don't want it in /lsst/config (default)

Setup Method 2: How to set up your own configuration commits to experiment with settings.

In this method, a single git clone of opsim3_config (e.g. located in your home directory) is set up to manage creation of sets of configuration files that will 
be used for running simulations. One commit can be arranged such that it is a complete set of settings with a message describing it so it may be 
differentiated from other commits.

The essential actions are: check out an opsim3_config branch (optionally creating a new branch based on a benchmark branch); editing the settings in the 
files; committing them; pushing them to github (so they can be checked out on any production machine).

Create a new branch in github (can also do this directly in git):

 # Create a new branch based off a benchmark branch on github.com
 # In github switch to the branch you want as your base
 # Create a new branch by typing kcook/my_new_branch_name in the "Switch branches/tags" dropdown box
 # Check out the new branch from github to your config machine
 
Clone the repository:

 # create a writeable clone of opsim3_config.git 
 # choose an appropriate location to work on the config files and cd there, e.g. 
 cd ~/github
 # clone the config repository
 git clone /lsst-sims/opsim3_config.gitgit@github.com

Now the process is to make edits, stage them and commit them (and note SHA1). From a production machine you can then check out these commits and 
start a simulation.

Switch to the branch you created in github:

 # From your config machine 
 git branch -a # check all branches on remote machine
 git branch # shows names of branches already on local
 # checkout a branch from remote
 git checkout -t origin/xxxxx # -t means track the branch on your local machine (same branch name)
 # or git checkout xxxxxx to get into branch already on the local machine
 git branch # check you are on the branch you think you are
 

http://ops2/lsst/config/
mailto:git@github.com
http://github.com
mailto:git@github.com


Or you can create a new branch from within git:

 git checkout -b mynew_test # creates a new branch from this point

Displaying the history (or log) of commits:

 git log # reverse chronological order of commits
 # SHA is unique to this repository; but first 7 chars are enough (short version)
 # short commit (~70 chars) should be concise and meaningful
 git log --pretty=short # multiline SHA and short message
 git log --pretty=oneline # SHA and short message
 git log --format="%\n" # formatted
 git log -n 1 # limits the number of commits - most recent first
 git log -n 1 --pretty=oneline
 # man pages needs the command
 man git-log
 man git-commit

Making changes to config files

 vi survey/LSST.conf
 git status # sheck that you edited; shows files that have changed
 git diff survey/LSST.conf # checks between current state and last commit 
 git checkout survey/LSST.conf # resets the file to original from last commit

Stage changes

 git add survey/LSST.conf # stages one file
 git add . # will stages EVERYTHING so make sure this is what you want
 git status # tells what you have done
 git reset HEAD test.txt # can back out a file that was staged accidentally
 git clean -f # will remove untracked files
 git clean -d # will remove untracked directories

 

Commit changes

 git commit -m "Making a one year run" #commits with a short message (no editor)
 git log --pretty=oneline # displays a list of commits (represents a set of files)
 

Continue editing, staging, and committing.

Push all changes up to repository on github

 git push origin tier1/run02 # for example

A Scenario and possible use cases

1) I need to adjust numbers in a previous commit (forgot to make a complete set of changes)

 cd survey
 vi Universal.conf
 git add Universal.conf
 git commit -n "Making requested visits 1 year WFD"

2) I meant to change LSST.conf to point to a different cloud file

  cd survey

  vi SiteCP.conf

edit cloud table name and seeing table names

 git add SiteCP.conf
 git commit -m "Changing Seeing and Clouds to 1 Year tables."

3) I want to adjust the minimum distance to the moon.

  cd scheduler

  vi Scheduler.conf

edit the parameter

  git add Scheduler.conf

 



Now we have 3 different commits but only the last on has all the changes we want.

So we roll up all the commits using git rebase

Rebase destroys history - So this only on non-public branches

 git rebase -i # do interactively to do clever things

shows 3 commits

use interactive commands to manipulate

doing nothing - leaves things as is (three commits stays three commits)
doing :q leaves rebase without ANY changes made
edit "s" instead of "pick"
:wq - leaves rebase, gives log message editor, saves changes
top line (Line 1) is the short message - make a descriptive as possible as short as possible
can include detail in subsequent lines
:wq to save finally

 git log # shows that there is one commit in addition to the original checkout point

 

What if I want to get back to a SHA?

 git checkout 949b0ac

 

What if I want to create a new branch from this point in my commit history?

git checkout -b mynew_test

 

What if I want to include that last change after all?

git merge mareuter/test_conf 

What if the changed I want to add back are in various commits?

git cherry-pick …. #will let you pick and choose what other changes you might want to add in by specifying a SHA 
to reapply to this branch; sometime there are conflicts you may have to resolve

 

Setting Up A Basic Workflow to Run Simulations

This section describes a typical workflow of creating a place to change parameters and execute runs to explore a particular topic.

A suggested procedure is to use one machine (home) on which to clone opsim3_conf, make edits, commit them, and push them to github so they can be 
checked out on any other production machine. This way only one machine will have to be maintained with a read/write repository (so you can push 
commits to github) a set of ssh keys.

A full description of all configuration parameters is here: http://ops2.lsst.org/docs/current/configuration.html#configuration

 # Setup read/write repository with keys on one machine 
 # check out all branches (or the ones you are interested in) and make new ones for new studies

On home laptop

 # chose an appropriate location to work on the config files and cd there, e.g. 
 cd /Users/petry/github
 # clone the repository to this location
 git clone :/lsst-sims/opsim3_config.gitgit@github.com
 # make edits, stage them and commit them; and note SHA1
 <see above>
 # push commits to github
 git push origin tier1/run02 # (or whatever branch you are working on)

On production machine

http://ops2.lsst.org/docs/current/configuration.html#configuration
mailto:git@github.com


 # choose a location for the configuration files (could be your home dir or the production dir)
 # clone the repository - this is a one-way version; you can't commit changes from here
 git clone  https://github.com/lsst-sims/opsim3_config.git
 git checkout master 
 git checkout cc52e00 # checkout the commit (SHA) containing the configs that you want to run
 git log -n 1 --pretty=oneline # make sure you have the commit you think you do by cross checking the message
 

Go to   to start the simulation and run MAF.How to Run OpSim and MAF

 

https://github.com/lsst-sims/opsim3_config.git
https://confluence.lsstcorp.org/display/SIM/How+to+Run+OpSim+and+MAF

	Set up Configuration Files using opsim3_config

