DP0.2 Known Issues and Major Changes vs DP0.1

DP0.1 was run with pipelines version v19.0.0 w_2019_46 DP0.2 was run with pipelines version v23.0.0 w_2021_40

With 2 releases per year, there was 2 years of development between versions used: Release notes can be found for the past 2 years at: https://pipelines.lsst.io/releases/index.html

The major changes include:

- · Generation 3 middleware
- Difference Imaging Analysis (DIA) Pipeline
- Native transformation of parquet tables to the standard data model: https://dm.lsst.org/sdm_schemas/browser/
- Scarlet for deblending on coadd measurement and major change in columns that build up `detect_isPrimary`
- Streak masking during coaddition
- Addition of sky objects in Object Tables and sky sources Source Tables.
- GAAP columns in the Object table for galaxy colors

Updated the thresholds for per detector visit-level PSF quality safeguards for inclusion in coadds	
⚠ DM-32625 - Jira project doesn't exist or you don't have permission to view it.). This is to ensure detectors with "bad" PSF

model fits do not get included in the coadd. Specifically, we set the following for LSSTCam-imSim:

- o maxEllipResidual = 0.0045 (default is 0.007)
- maxScaledSizeScatter = 0.006 (default is 0.009)
- Single Frame Configs:
 - Used chebyshev polynomial order for background fitting = 1 and no SkyCorrection
 - Source selection for measurePsf in `charImage`: charImage.measurePsf.starSelector["objectSize"].signalToNoiseMin = 50
 - * Compare https://github.com/lsst/obs_lsst/blob/dc2/run2.2/config/imsim/processCcd.py with https://github.com/lsst/obs_lsst/blob/v23.0.x/config/imsim/characterizeImage.py and https://github.com/lsst/obs_lsst/blob/v23.0.x/config/imsim/calibrate.py

Added a maximum mean offset threshold for the SFM astrometry fit to be considered a "success" (

⚠ DM-32129 - Jira project doesn't exist or you don't have permission to view it.

). This safeguards against detectors

whose fit did converge but had high on-sky scatter from getting into the coadds.

+ Survey Property Maps

Known Issues:

• No Forced Photometry on the goodSeeingCoadd templates: aka "light curve zeropoints."