
1.
2.

3.
4.

Design page for DM-1112
Target release Winter 2015

Epic

 - Jira project doesn't exist or you don't have permission to view DM-1112

it.

Document status DRAFT

Document owner Simon Krughoff

Designer Simon Krughoff

Developers Simon Krughoff

QA

Goals

Develop a tool to construct Camera objects from collections of fits files (or MEFs).

Background and strategic fit

The camera team would like to use the DM stack to analyze their test data. They can do this using obs_file, or by defining Camera objects by hand, but it
would be much nicer to have a tool to create the appropriate Camera object from the data directly.

Requirements

Title User Story Importance Notes

1 Support both amp per file and
sensor per file with amps in
extensions. There are actually
4 cases:

amp per file
chip per file amp per
extension
chip per file raw mosaic
camera per file chip per
extension

The data are currently in MEFs, one per sensor. This could change so should be flexible. Must have

2 Should use a minimum of
external ancillary information.

The goal will be to create the Camera only using primarily information in the FITS headers.
Amp and Detector information will be taken from the header with some values possibly
given global defaults in the config. Camera information will be supplied in a config to the
task.

Must have
The
camera
team are
using the
NOAO
mosaic
keywords:
http://i
raf.
noao.edu
/project
s
/ccdmosa
ic
/imagede
f
/fitsdic
.html

User interaction and design

The current design of the image format from the camera team is here: https://confluence.slac.stanford.edu/display/LSSTCAM
/Draft+File+Specification+for+EO+Test+Images

 - Jira project doesn't exist or you don't have permission to view DM-1112

it.

https://jira.lsstcorp.org/browse/DM-1112?src=confmacro
https://confluence.lsstcorp.org/display/~krughoff
https://confluence.lsstcorp.org/display/~krughoff
https://confluence.lsstcorp.org/display/~krughoff
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/fitsdic.html
https://confluence.slac.stanford.edu/display/LSSTCAM/Draft+File+Specification+for+EO+Test+Images
https://confluence.slac.stanford.edu/display/LSSTCAM/Draft+File+Specification+for+EO+Test+Images

Also see the notes from an Oct 8 meeting

This could be informed by the DM effort to implement this tool. I'm first going to design the chip per file with an amp per extension. We can see how that
fits with a more general design.

Design

Inherit from CmdLineTask. This provides --config and --configfile command line options, but will also be callable
--showCamera: will display the camera in ds9
--writeCamera=destination: will save the camera description so it can be reused later.
It may not be possible to inherit directly from CmdLineTask since it requires a repository. In that case, we will add a slimmed down
ArgumentParser that doesn't require a mapper. This may be generally useful anyway.

Per chip info will be in the header.
The assumption is that the chip level info will be in the Primary Header
Unfortunately this will require some custom keys (indicated with *)
We need to make sure we are not colliding with accepted standards.

Camera level info will come from a config (or specified with the --config option on the command line).
Mapping between key names will happen via a key map taken from the config. This will simply by a dictionary mapping default name (key) to
name in the data (value).
There will also be a preprocessing step that will allow for more complicated mapping as well as filling the custom keys defined here at runtime.
This utility will not produce a valid repository. I think it should be the job of an ingest.py script to do that.

Amp info mapping

I don't completely understand the different coordinate systems available. See: http://iraf.noao.edu/projects/ccdmosaic/imagedef/imagedef.html

I believe DTM/DTV are the ones we should assume are default, but I'm happy to be corrected.

Header Key AmpInfo Description Default

EXTNAME name Name of Amp: '0,1'

DETSEC BBox Bounding box of physical pixels in

in assembled coordinates

GAIN Gain Gain value of this amp e-/count 1.

RDNOISE ReadNoise Read noise in counts 0.

SATURATE Saturation Value of saturation threshold in counts

DTM[1-4] check mod 90 rotation ReadCorner Location of first pixel read in assembled

coordinates

LLC

LINCOEFF LinearityCoeffs Coefficients of linearity fit 0., 1.

LINTYPE LinearityType Type of linearity: This could map to

a method for applying non-linearity

correction

POLY

NAXIS1, NAXIS2 RawBBox Bounding box of raw data (including

prescan, overscan regions)

in raw coordinates

DATASEC RawDataBBox Bounding box of raw data in the raw frame

DTM[1-4] FlipX Flip x axis when assembling? False

DTM[1-4] FlipY Flip y axis when assembling? False

DTV1, DTV2 RawXYOffset Offset of to apply to assemble raw frames

in a mosaic

0,0

BIASSEC[1] HOverscan Bounding box of horizontal overscan

in raw coordinates

BIASSEC[3] VOverscan Bounding box of vertical overscan

in raw coordinates

Empty BBox

BIASSEC[2] Prescan Bounding box of prescan region

in raw coordinates

Empty BBox

https://confluence.slac.stanford.edu/display/LSSTCAM/October+8th+-+Fits+header+meeting
http://iraf.noao.edu/projects/ccdmosaic/imagedef/imagedef.html
http://iraf.noao.edu/projects/ccdmosaic/imagedef/imagedef.html

Detector info mapping

Header Key Detector Config Description Default

CCDNAME Name Name of detector slot: R:22, S:11

DETSIZE/CCDSIZE BBox Bounding box of physical pixels guess from

amps?

OBSTYPE detectorType Type of detector: SCIENCE, GUDER

This can be extended.

SCIENCE

SERSTR* serial String serial identifier for the installed device 'none'

XPOS*, YPOS* offset_[xy] Offset of the chip from the origin in physical

coordinates (mm)

0.0

XPIX*, YPIX* refpos_[xy] Position on the chip to which the offset refers LLC

YAWDEG* yawDeg rotation of the detector about z axis 0.0

PITCHDEG* pitchDeg rotation of the detector about y axis 0.0

ROLLDEG* rollDeg rotation of the detector about y axis 0.0

XPIXSIZE*, YPIXSIZE* pixelSize_[xy] Size of a nominal pixel in physical coordinates (mm)

TRNSPOSE* transposeDetector Transpose the pixel grid before orienting in the focal plane? False

These could mostly be handled with a WCS, but it is fairly rare to have a WCS that goes to focal plane coordinates and if it exists, it can be used to fill in
these key words.

Camera info mapping

Camera Config Description Default

name Name of the camera 'FileCamera'

plateScale plate scale at the focal plane (arcsec/mm) 1.

radialCoeffs radial coefficents that describe a

radial polynomial distortion

I think the following produces no distortion

[0, 1, 0]

Implementation of use case

I implemented the plotting use case outlined above. The code can be found . The results from commit here 102320d are all shown below.

This shows an assembled flat provided by Jim C. The segments are labeled. Note that a bias correction and rudimentary gain correction have been
applied. This agrees with an assembled flat he provided shown here:

https://github.com/SimonKrughoff/CameraTeamTestDataScripts

Below is plotted an untrimmed version. The green box are raw data boundaries, the red box is the overscan region and the blue box is the data region.

The above images were produced using bounding boxes and offsets calculated in the code. This makes the plotted images match the orientation from
Jim's example. If I use the bounding boxes in the header (commit 280194e), I get a good assembly, but it is flipped about the y-axis. I'm not sure how
important that is or what I'm missing in the headers, but I believe that the above orientation does not imply that the serial direction is +ve in the +ve x
direction.

Questions

Below is a list of questions to be addressed as a result of this requirements document. These are just here for historical reasons. These answers will be
fleshed out in the design above.

Question Outcome

Some of the necessary data will have to be input by the user.

How should we do that?

config file
command line
subclass
something else

The result will be that we take any camera level info as config params.

The rest will come from image headers. We are defining some custom

header keys but they will be defaulted. Any key can be remapped using

a mapping dictionary from a config file. More complicated mapping will be

done through a processing step.

Not Doing

	Design page for DM-1112

