
Python Coding Standards Compliance

Policy

Upon receiving a Standards Compliance report, the developer is expected to resolve the issues. Most LSST Rules may be 'broken' if the developer feels
there are good reasons for not following the Standards. This caveat might be tightened up if the developers aren't primarily holding to the Standards.

Coding Standards Compliance Tool

LogiLab was selected as the most comprehensive Coding Standards Checker for Python available. An important feature is its design strategy PyLint
allowing user-coded add-ons to the Rule base.

Documentation

PyLint User Manual: http://www.logilab.org/card/pylint_manual
PyLint eror messages sorted by;

Message text
Error code

Rules

Currently the only changes to the LogiLab Rule base is the disabling of some Rules to better reflect the . (the PyLint LSST Python Coding Standards Note:
 startup file containing the list of disabled errors is missing.)pylintrc

Suppressing an Infraction

PyLint provides a variety of methods to either permanently or temporarily turn-off an infraction report covering a single line or a block of lines. The option
to permanently disable all infractions against specific Rules are also provided in the initialization script and has been used to refine the LSST .pylintrc
Infraction Report to those Rules of interest.

Provided below is the example/tester on suppressing an infraction report within the user's code. If you need to inhibit an infraction on a single line, PyLint
review shown below. meth3

 """pylint option block-disable-msg"""

class Foo(object):
 """block-disable-msg test"""

 def __init__(self):
 pass

 def meth1(self, arg):
 """this issues a message"""
 print self

 def meth2(self, arg):
 """and this one not"""
 # pylint: disable-msg=W0613
 print self\
 + "foo"

 def meth3(self):
 """test one line disabling"""
 # no error
 print self.bla # pylint: disable-msg=E1101
 # error
 print self.blop

 def meth4(self):
 """test re-enabling"""
 # pylint: disable-msg=E1101
 # no error
 print self.bla
 print self.blop

This document was drawn from on the Trac/Wiki, with some light edits (including some re-formatting for Python Standards Checking
Confluence). The content on this page should be verified before the Trac/Wiki page is removed.

http://www.pylint.org
http://www.logilab.org/card/pylint_manual
http://pylint-messages.wikidot.com/all-messages
http://pylint-messages.wikidot.com/all-codes
https://confluence.lsstcorp.org/display/LDMDG/Python+Coding+Standard
https://dev.lsstcorp.org/cgit/LSST/DMS/devenv/codecheck.git/tree/setup/pylintrc
https://dev.lsstcorp.org/trac/wiki/PythonStandardsChecking

 # pylint: enable-msg=E1101
 # error
 print self.blip

 def meth5(self):
 """test IF sub-block re-enabling"""
 # pylint: disable-msg=E1101
 # no error
 print self.bla
 if self.blop:
 # pylint: enable-msg=E1101
 # error
 print self.blip
 else:
 # no error
 print self.blip
 # no error
 print self.blip

 def meth6(self):
 """test TRY/EXCEPT sub-block re-enabling"""
 # pylint: disable-msg=E1101
 # no error
 print self.bla
 try:
 # pylint: enable-msg=E1101
 # error
 print self.blip
 except UndefinedName: # pylint: disable-msg=E0602
 # no error
 print self.blip
 # no error
 print self.blip

 def meth7(self):
 """test one line block opening disabling"""
 if self.blop: # pylint: disable-msg=E1101
 # error
 print self.blip
 else:
 # error
 print self.blip
 # error
 print self.blip

 def meth8(self):
 """test late disabling"""
 # error
 print self.blip
 # pylint: disable-msg=E1101
 # no error
 print self.bla
 print self.blop

Suppressing Multiple Infractions

Multiple infractions on a single line are suppressed using the syntax:

<statement> # pylint: disable-msg=<error#>[,<error#>]*

For example:

from sdqaLib import * # pylint: disable-msg=W0401,W0403

Common or Curious Error Reports

"Statement seems to have no effect" Error

Python does not require a ';' at the end of most statements but it doesn't object should you gratuitously add one. On the other hand, Pylint reports such an
occurrence is an error:

self.policy.set("singleKernelClipping", False);

produced the following errors - as a result of the extra semi-colon:

examples/JackknifeResampleSpatialKernel.py:136: [W0104,
DiffimTestCases.jackknifeResample] Statement seems to have no effect
examples/JackknifeResampleSpatialKernel.py:136: [C0321,
DiffimTestCases.jackknifeResample] More than one statement on a single line

Relative Import Error

PyLint reported:

python/lsst/ip/diffim/createPsfMatchingKernel.py:5: [W0403] Relative import 'createKernelFunctor'

The python source:

all the c++ level classes and routines...
import diffimLib

all the other diffim routines
from createKernelFunctor import createKernelFunctor

The solution:

all the c++ level classes and routines...
import diffimLib

all the other diffim routines
from .createKernelFunctor import createKernelFunctor

Note the leading period. The warning is about the new-to-python 2.5 feature of relative imports as described in PEP 328: <http://www.python.org/dev/peps
/pep-0328/> and the forthcoming change in how the ambiguity of absolute imports will change. The old import scheme that most of us have used for years
has a serious flaw. Suppose you have the following file hierarchy:

 mypkg/
 __init__.py
 sub1/
 __init__.py
 foo.py
 bar.py
 sub2/
 __init__.py
 why.py

and starts with: bar.py

import foo

This is fine unless you install a new package named " " you want to access it from . Then it's a headache because the local shields the foo and bar.py foo

main-level package FOR NOW. foo In a few generations of Python the main-level foo will shadow the local instead!!! Thus the warning. foo

You use the new relative import syntax: should

from . import foo

http://www.python.org/dev/peps/pep-0328/
http://www.python.org/dev/peps/pep-0328/

You can use more dots as needed:

from ..sub2 import why
from ...mypkg.sub2 import why # stupid, but shows dots to go back up again

You can even get the new absolute import syntax (preferring global to local module names) but you have to use "from import future

" This may only be necessary if you really do want to access a global module whose name is shadowed by a local module.absolute_import I suspect
any code that does not will start raising deprecation warnings when we switch to Python 2.6 and in the long run such code could break.

	Python Coding Standards Compliance

