
Winter2015 Package Reorganization Planning

Introduction

This page describes a straw-man proposal to reorganize the LSST DM software stack, both at the package (i.e. git/eups/scons boundary) and namespace
(C++ namespace and Python package) level. At the package level, it is almost entirely a consolidation of packages. Many existing packages will have
components moved into more than one package in the new scheme, but most will have the vast majority of their content move to just one new package,
and there will be many fewer packages.

The motivation for moving towards consolidation are:

Having fewer packages is less intimidating to users and makes the installation process at least simpler (I hope that it may also simpler, but feel be
I don't think we know that yet).
Having a large number of packages complicates the build, packaging, testing, and documentation systems, requiring more things to be automated
to keep developer workflows efficient.
Testing is easier with a smaller number of packages, as high-level components that may have otherwise been in a separate package can be used
when testing low-level components.
Earlier concerns about revision control collisions due to multiple developers working on the same package have essentially been eliminated by
the switch from svn to git.
A smaller number of packages makes a namespace reorganization easier, by making it more likely that related code can be put within a single
namespace without needing that namespace to cross package boundaries.

There are also some arguments against:

Partial stack rebuilds that don't reuse local source directories (e.g. those invoked by "eups distrib install") will be slower on average, as we will
have to rebuild more code. Note that binary packages installs should be unaffected overall, and developer builds that reuse local source
directories may be faster, as scons should be able to do a better job of determining what needs to be rebuilt when it doesn't have to cross slightly
package boundaries.
Both internal and external packages will often have dependencies that are larger than they strictly need to be, which will make building just that
package slower and more difficult than before, especially if the extra dependencies in our code bring extra third-party package
dependencies. The main goal of a good reorganization proposal is that it mitigates this effect.

And there are arguments that are strongly in favor of some kind of reorganization, but are agnostic as to whether the corresponding package namespace
reorganiation should be a consolidation, a further partition, or neither:

Our current set of namespaces are largely historical and based on WBS elements that are meaningless to users and most developers.
Some of our most important logical code units are each scattered across several different namespaces and packages, making them harder to
follow than necessary.
Many of our current namespaces are essentially smorgasbords of unrelated or tenuously-related code, and hence provide little or no
organizational utility.

Package Reorganization Proposal

New Packages

In the above diagram, lines indicate dependencies between the proposed new packages (arrow points from the dependent package to the one it depends
on). Regular solid lines indicate required dependencies, while dotted lines indicate optional dependencies that are necessary to enable certain
features. The gray line between "primitives" and "harness" indicates a possible temporary dependency that may be necessary during the initial transition
but should ultimately become unnecessary after some already-planned improvements to the codebase are made.

The third-party package dependencies are discussed in the next section.

All of the names of the above packages are purely provisional; I hate naming things, and I think the content of these packages is a much more important
discussion than their names. But I'd rather not change any names until that discussion is done, because it'd be a pain to change all the diagrams.

Here's a general description of the philosophy behind this organization:

qserv is mostly distinct from the rest of the DM stack, and shares only a few low-level components. I've put these shared components in asbase,
well a few others that are both lightweight and of potential use to in the future (or closely related to features that are of potential future qserv
use). Much of the content of is geometry primitives and algorithms - and the science pipeline both need spherical geometry, and it base qserv
makes sense to keep this with the Euclidean geometry, as the two should probably share components (and while only the science pipeline code
and its supporting middleware need the Euclidean geometry at present, the database interfaces may need them in the future). However, I'm
actually not sure here where the line between qserv and scisql is being drawn - it's entirely possible that some of the code I've considered a qserv
dependency is actually a scisql dependency.
common contains more low-level components that probably has no interest in, but are useful as both the building blocks and as a qserv
"common language" between middleware and algorithmic code. This includes completely general code like the configuration system as well as
more astronomy-specific components like and (but not their specialized higher-level counterparts, like and Image BaseCatalog Exposure Sour

), as these are expected to play an important role in the persistence framework (interfaces that define persistable classes are largely ceCatalog
housed in , though the is not). also contains the base class, but .common Butler common Task not CmdLineTask
harness contains the and its helper classes, as well as , argument parsing, and interfaces (but not implementations) for Butler CmdLineTask
parallel execution.
execution contains the implementations for parallel execution, i.e. the former and most of the contents of *. I've been quite pex_harness ctrl_
vague about what it contains beyond that, as it's the part (along with qserv) of the codebase I'm least familiar with.
primitives contains the vast majority of the low- and mid-level algorithmic code and the data types it uses - not just most of the previous contents
of , but the previous contents of most of * and * as well. contains the high-level algorithmic code: most of the previous afw meas_ ip_ pipelines
content of . Essentially, the dividing line between and is whether the code needs to make use of the pipe_tasks primitives pipelines Butler
or do parallel processing; code that does lives in , while code that doesn't lives in . The possible temporary dependency of pipelines primitives pri

 on represents the fact that a couple of our current algorithmic classes (and) currently do mitives harness Task CalibrateTask IsrTask
depend on the , but ultimately should not, and hence should live in .Butler primitives
testdata will be, in the near future, a straightforward combination of and . Eventually I'd like it to contain a more sensibly-afwdata obs_test
defined simulated test dataset that's fully butlerized, using an artificial camera that avoids dependencies on any of the real packages. It obs_*
may be useful for it to contain code used in generating new on-the-fly test data as well. That complicates its relationship with and primitives harn

, because an embedded package implies a dependency on and any code to generate test data on-the-fly would have to rely ess obs_* harness,

on . At the same time, both of those packages would continue to depend on for some of their unit tests. Essentially, we'd primitives testdata
have an optional circular dependency - while you'd be able to use either of or without the other, you might not be able to primitives harness fully
test either without having all three packages setup. If that's too hard to express to Eups, we could just move such tests to , though I pipelines
think making the backwards dependency of on and implicit would be work as well, because there's no reason to use testdata primitives harness

 without having at least one of those two set up. Note that I still expect many tests in or to work without .testdata harness primitives testdata
extension_* are packages that represent unofficial extensions to the pipelines. Unlike in the past with meas_extensions_*, I think we should not
put code in if we plan to run it regularly as part of the pipeline - this put an unfortunate burden the packages, which were then extension_* obs_*
the only place where frequently-used extensions could be enabled. In this proposal, packages really are "level 3" sort of packages, extension_*
and if we decide we like something well enough it should be run as part of "level 2", then we should move it to or .pipelines primitives
the packages are mostly as they were. I'm expecting they should mostly be able to depend only on , not , but given obs_* primitives pipelines
the current dependency of on the , that may not be achieved immediately. And an individual package would still be able IsrTask Butler obs_*
to depend on if necessary (though I hope it won't be necessary, and that this makes other potential users of packages, like pipelines obs_*
PhoSim, happier).

Third-Party Package Dependencies

Third-party package dependencies are shown in the above diagram as black boxes. Dependencies that are optional or relatively straightforward to
remove are in parenthesis, with more discussion below.

Nearly all of our code depends on , , and , and enough of our low-level code depends on that I think we should boost swig python numpy
consider these four essential for any piece of the pipeline. When we've adopted C++11, it may be useful to revisit , as most of our low-level boost
components only use components that are now available in the C++11 standard library. I don't think it's worthwhile to try to make that split boost
now, though.
qserv depends on many other packages none of the rest of the stack needs, and it's just as easy in the new layout as it was in the old to keep
these from bleeding into the rest of the stack.
The code I've slated for the package currently depends on , (which I envision moving to third-party status), and , base Eigen ndarray Doxygen
which means these would become implied dependencies of . I think it'd be easy to ultimately remove all of these dependencies, however, qserv
by including in only the lowest-level Euclidean geometry components (this is a change from my original proposal, reflected in the detailed base
mapping below), and simply removing the minimal (and relatively unimportant) dependencies on and that the low-level Eigen ndarray
components currently have. For , I think it's highly likely we'll be moving to a different documentation build system, which may not Doxygen
require at a per-package level. In any case, it's always an optional dependency.Doxygen
common will almost certainly have to depend on and , at least as long as the image classes and the higher-level geometry Eigen ndarray
classes are here. Its dependencies on and are very much temporary; I expect them to be removed along with the rest mysqlclient mysqlpython
of the old Formatter-based persistence framework. I expect these dependencies to resurface in , which I imagine database ingest code harness
landing. A dependency on is hard to avoid, especially immediately, though I suppose it's possible this could be moved down to common cfitsio h

 if we separate and persistence from the classes themselves (but even if that's desirable, we shouldn't count on it arness BaseTable Image
being easy, or happening soon). I've also made a change to my detailed mapping from my original version that puts the base class in Wcs comm

 instead of . I think that's necessary for the components that need to be able to load data based on its position on the sky, on primitives harness
but it brings along a dependency on . I think we'll be able to push that dependency back up to eventually, though, by making wcslib primitives
the class pure abstract and moving the entirety of the implementation to .Wcs primitives
Like , depends on a few packages the rest of the stack doesn't, and it's easy separate things. The only one I'm less certain qserv execution
about is , which we might need to move to if we want to expose some parts of it directly to algorithmic code instead of hiding it mpi harness
completely behind our own message-passing interfaces.
Essentially all the third-party packages required by the science code are required by (and are required by in the current layout; the primitives afw
pipe_*, meas_*, and ip_* packages above add additional required dependencies to the stack). Of these, I think is unavoidable, as afw no wcslib
are and , unless we replace these with similar third-party libraries. We could make optional by making part of the build system gsl minuit2 xpa
conditional, as is already the case for . , and are only used for diagnostics and tests, are are hence optional, and cuda Matplotlib pyfits scipy
should remain that way. Interestingly, while is listed as a required dependency of , we actually seem to have no code that uses it (but it fftw afw
seems likely that we would someday). We've already made plans to remove the dependency on . The only additional astrometry.net
dependencies for are optional: , for one of the implementations, and , which is currently used by .pipelines healpy skymap mysqlclient ap

Detailed Mapping from Old to New

You can get the full color-coded diagram where I did all this work (using) here: . I've split that into chunks to https://wiki.gnome.org/Apps/Dia/ packages.dia
paste the images below, with a bit of text below each chunk explaining some of my reasoning.

https://wiki.gnome.org/Apps/Dia/
https://confluence.lsstcorp.org/download/attachments/15794547/packages.dia?version=3&modificationDate=1409842156000&api=v2

base: Everything moves to the new package. Even if doesn't want it, it may someday, and all of this is very lightweight. base qserv
geom: Everything moves to the new package, because needs it. Will be rewritten in C++, soon, at which point it may need some of base qserv
the other things being added to , even though it has no dependencies right now.base
pex_exceptions: Moves to ; lightweight, and may want it in the future. No complaint from me if doesn't want it and it goes to base qserv qserv

 instead.common
utils: Most things move to , as it's all lightweight, and I imagine might want to make use of the angle-string and ieee code base qserv
someday. goes to , since only algorithmic code will ever use it, and the temporary workaround goes to PowFast primitives unordered_map
common, at least as long as it lasts.

daf_base: Everything moves to common
pex_logging: Moves to , where it will soon be replaced by the new logging package.base
pex_policy: Moves to , for the rest of its (hopefully short) life.common
daf_persistence: The old, Formatter-based persistence framework, if it lasts this long, moves to common. The is one of the major Butler
pieces of .harness
ndarray: We've discussed just switching to using this as a third-party package, and this seems the time to do it.
cat: DB ingest scripts go in (though they'll be rewritten pretty soon). I imagine we'll want the MySQL utilities here in , so they can harness base
be shared with .qserv
ctrl_*, pex_harness: There's a lot of code in this little box, but I think it all quite straightforwardly belongs in .execution
pex_config: Everything goes to , as it's needed by stuff in both and .common primitives harness

: In a change from the first version of this proposal, I'm recommending we move only the lowest-level components to : points, afw/geom base
boxes, and Angle. It's easy (and non-harmful) to remove Eigen from these, if desirable, and they're the ones we'd likely want most when
interfacing with the spherical geometry code (though we may want for that too, but I worry about having that in in case we want to Polygon base
persist it using). Unless decides that it does want , we'll probably want to put at least the transform objects in , BaseTable qserv Eigen common
along with the closely-related ellipse objects.

afw/image: Everything goes to , with the exception of the class itself . That's primitives Image and the base class, which go into commonWcs
because I think needs to be a basic building block of our persistence framework (i.e. more complex objects may want to save pieces of Image
themselves as , in a more fundamental way than they might other class instances). If it turns out we really don't need that (and nothing in Images

 needs either), then we can move it to . harness Image primitives I'm pretty sure will have to know about the as well, in order to be harness Wcs
able to organize and index data spatially (a careful observer might have noticed that I already put interfaces in , which would be skymap common

 In fact, I'm a little worried that the or the persistence framework base classes might need to know about impossible with access to).Wcs Butler
 as well, which would involve moving much more stuff from down into , as depends on a ton of other Exposure primitives common Exposure

classes.

afw/cameraGeom: I think this should go to common instead of because we want to keep the interface classes needed to describe a primitives
camera in one place, and the interfaces for bookkeeping parts of that (how to create an exposure ID from a data ID, for instance) are things that h

 needs to know about.arness
afw/coord: Goes to . I don't think wants something this high-level as part of its geometry package, but if it does, we'd have to primitives qserv
move this (and the WCS code from) down to .afw/image base
afw/gpu: Goes to .primitives
afw/display: Goes to .primitives
afw/fits: Moves down to , as FITS is going to be one of our more frequently-used persistence targets, and that means we want the common
ability to do FITS operations down there.

afw/detection: Everything goes into , pretty straightforwardly (though, as I'll discuss later, I don't think it all belongs in the same primitives
namespace).
afw/formatters (not shown): Goes to , until it goes away entirely.primitives

afw/math: Like , everything goes into , but probably not the same namespace.afw/detection primitives

afw/table: The base classes and I/O move to , where they're needed for the persistence framework. The derived classes go to common primiti
, except for , which is needed in common because that's where CameraGeom went.ves AmpInfo

: goes to , as it's only used by . Could remove it if goes.skypix pipelines ap ap
skymap: base classes go to common, as I think the will want to know about those interfaces. The derived classes go in , Butler pipelines
though could also be a possibility. I chose simply because it seemed better for organizational purposes to keep them close primitives pipelines
to the high-level coadd code and the command-line driver that creates skymaps.
obs_test: goes to testdata.
coadd_utils: the coadd data ID argument parsing stuff (recently moved here from) goes to . I have coaddition helper pipe_tasks harness
functions going to , just because it's low-level code that doesn't need to go in , but putting it in would have the primitives pipelines pipelines
advantage of keeping it close to the higher-level coaddition code. I'm pretty sure the old coadd driver code here is unused and can just be
removed.

daf_butlerUtils: everything goes to , where it's united with the rest of the stuff from . This is a move we harness Butler daf_persistence
need to look into carefully before we actually try to implement it, as I'm worried some stuff here may depend on stuff I've moved to . I'm primitives
counting on the rewrite to address that, and I don't know if that's appropriate. If necessary, we could move some components to Butler pipelines
, but that could upset the idea of the packages depending only on , and I think this code fits better organizationally in .obs_* primitives harness
pipe_base: As discussed in the overview, I have the base class moving to so it can be used in -free mid-level algorithm Task common Butler
scripts in primitives, but the rest going to .harness
shapelet: straightforwardly moves to .primitives

meas_base: reversing a tough decision made in the first design review, I think we should separate the forced measurement meas_base
command-line drivers from the mid-level plugin mechanism. The plugins and the measurement subtasks go to , while the command-primitives
line drivers and reference catalog lookup goes to .pipelines

meas_algorithms: most of this goes to , but Mike Jarvis' shapelet PSF and shapelet library go to a new extension package for primitives
archival, and CoaddPsf goes to to live alongside the rest of the high-level coadd code that worries about the spatial relationships pipelines
between exposures. Much of the C++ code here and a smaller amount of the Python will ultimately be removed, as it's part of the old
measurement framework being replaced by .meas_base

meas_astrom: goes to .primitives
meas_deblender: goes to . May need to consider moving it to when we reimplement it as a multi-epoch deblender, but primitives pipelines
we'll cross that bridge when we come to it.
ip_isr: goes to .primitives
ip_diffim: goes to . I may have missed a CmdLineTask or two that would go to , but I think the relevant one is in primitives pipelines pipe_ta

.sks

coadd_chisquared: this goes to pipelines, if we still need it. I'm not sure we do, because I think we've agreed that if we do want to create chi-
squared coadds, we'd do it differently.
ap: this goes to pipelines. I've seen a lot of apathy about keeping it working in the presence of schema and API changes in the catalogs it reads;
do we need to keep it alive? Or should we archive it and plan to resurrect it when we have a better idea of what the association pipeline will need
to do.

pipe_tasks: The command-line driver tasks and everything related to coadd-building goes to , while the subtasks that are concerned pipelines
with processing within a single image go to . The data repo inspection tools, like , go to .primitives registryInfo.py harness

meas_multifit; Almost everything in the current goes to , as it's really concerned with galaxy modeling, and only meas_multifit primitives
tangentially related to MultiFit (so it probably won't land in a namespace that includes "multifit" at all). The exceptions are the driver tasks I
created to do the S13 proof-of-concept work; they're tied to a very specific set of simulations, and while they may be useful to look at in the future,
we shouldn't have them in the main codebase. When we do actually implement a MultiFit measurement framework, at least some of it will have
to live in p .ipelines

obs_*: these remain essentially unchanged. I'm hoping with the move to a smaller number of packages, and the idea that * packages obs_
should mostly depend on , not will alleviate some of the concerns that lead to an earlier proposal that we split each * primitives pipelines, obs_
package in two.
datarel: I'm no expert on this package, but it actually seems like there's nothing here we really need to keep, at least not in the long-term. I'd
like someone more familiar with the package to confirm that, however.

Namespace Reorganization Proposal

TBD

Implementation

TBD

Stale/Dead Code

TBD

	Winter2015 Package Reorganization Planning

