
1.
2.

1.
2.

Metric Calculation Package Reorgnization

Directory Structure

package
 bin # Shell scripts
 bin.src # Command line python scripts
 docs # Non-API documentation
 pipelines # YAML pipeline definition files (may have subdirs)
 python # All tested python code lives here
 lsst
 faro
 summary # Tasks that summarize other metric measurements
 base # Base classes that others can inherit from
 preparation # Tasks that prepare input for other downstream tasks
 measurement # Tasks that compute metric measurements
 scripts # Code invoked by command line python scripts in the bin directory
 utils # Utility code used by other classes
 tests # Unit tests for code under the python directory
 data # Data serving unit tests
 ups # EUPS directory

Class Name Conventions

Connections classes consist of the name of the measurement class they are associated with, plus "Connections" (e.g., MatchedCatalogTaskConnecti
 is the connections class for).ons MatchedCatalogTask

Always use the singular form of the dataset type in names. For example, use "Catalog" instead of "Catalogs", "Tract" instead of "Tracts."

Instead of using "MatchedCatalog" in class names, specify has been matched (e.g., or).what MatchedTract, MatchedPatch MatchedVisit

Measurement tasks:

Measurement tasks and their associated config classes have names such as (e.g., MetricnameTask/MetricnameTaskConfig PA1Task
 for metric PA1). The names are CamelCase with the first letter capitalized./PA1TaskConfig

Classes that can calculate multiple metrics by means of different configs use names like , where "x" denotes that multiple metrics (AM1, AMxTask
AM2, AM3; i.e., x=1, 2, or 3) can be calculated from the class . (This is mostly going to apply to KPMs that have defined names such as AMxTask
AM1, ABF1, etc.)

The name of the module containing the class definitions is CamelCase with leading uppercase (e.g.,). Modules group classes TractMeasureTasks.py
by the dataset type on which metrics will be calculated, and the dataset type should appear in the name. For example, MatchedVisitMeasureTasks.py
contains measurement tasks that are designed to operate on matched catalogs from visits, while contains tasks to calculate VisitMeasureTasks.py
metrics per visit.

Catalog generation tasks:

Tasks that create/compile the datasets to be passed to measurement tasks currently have names like (and associated MatchedCatalogTractTask
Config and Connections classes).

I propose rethinking this naming for 2 reasons:

to capture the that is performed by the task,action
to shorten the names a bit

For example, performs the matching of catalogs from coadds at the tract scale. Because "matching" implies that catalogs MatchedCatalogTractTask
are being combined, we can get rid of "Catalog" from the name (to address point #2 above). To address point #1, start the name with the action that is
being performed (i.e., "match") – perhaps something like ?MatchTractTask

Aggregation tasks:

Aggregation tasks have names of the form (e.g.,).DatasetTypeAggregationTask MatchedCatalogsAggregationTask

Because these class names can get very long, I propose the following changes:

Get rid of the implied "catalogs",
Shorten "Aggregation" to "Agg"

For example, instead of , use .MatchedCatalogsTractAggregationTask MatchedTractAggTask

Black: summary as currently implemented (21 January 2021)

Blue: proposed

Data Unit Example
Metrics

Inputs (Assembly)

Preparation (Prep)

Analysis (Analysis)

Measurement (Meas)

Measure Aggregation (Agg)

Summary / (Roll-up)

Generic catalog analysis (used as
base classes)

number sources CatalogAssemblyBaseClas
s (??)

CatalogAnalysisBaseTask

CatalogAnalysisBaseTask

CatalogsAggregationBaseTask

CatalogSummaryBaseTask

Matched sources analysis within
patch, single-band

Base: MatchedCatalogTas
k(MatchedBaseTask)

PatchMatchedPrepTask

 Base: MatchedCatalogAnalysis
Task(CatalogAnalysisBaseTask)

PatchMatchedMeasTask

 Base: MatchedCatalogsAggre
(gationTask CatalogsAggregati

)onBaseTask

PatchMatchedSummaryTask

Matches sources within patch,
multi-band

Base: MatchedCatalogMult
iTask()MatchedBaseTask

PatchMatchedMultiBandPr
epTask

Base: MatchedMultiCatalogAnal
ysisTask
(CatalogAnalysisBaseTask)

PatchMatchedMultiBandMeasTa
sk

(not implemented??)

PatchMatchedMultiBandSum
maryTask

Matched sources within tract,
single-band

Base: MatchedCatalogTra
ctTask
(MatchedTractBaseTask)

TractMatchedPrepTask

 Base: MatchedCatalogTractAnal
ysisTask
(CatalogAnalysisBaseTask)

TractMatchedMeasTask

Base: MatchedCatalogsTract
(AggregationTask CatalogsAg

)gregationBaseTask

TractMatchedSummaryTask

Matched sources within tract,
multi-band

(not implemented??)

TractMatchedMultiPrepTask

(not implemented??)

TractMatchedMultiBandMeasTa
sk

(not implemented??)

TractMatchedMultiBandSumm
aryTask

Sources within visit N/A VisitAnalysisTaskBase:
(CatalogAnalysisBaseTask)

VisitMeasTask

Base: VisitAggregationTask

VisitSummaryTask

Objects within patch N/A Base: (PatchAnalysisTask Catal
)ogAnalysisBaseTask

PatchMeasTask

 PatchAggregationTaskBase: (
CatalogsAggregationBaseTask
)

PatchSummaryTask

objects within patch, multi-band N/A PatchMultiBandMeasTask PatchMultiBandSummaryTask

Objects within tract, single-band N/A Base: TractAnalysisTask
(CatalogAnalysisBaseTask)

TractMeasTask

(not implemented??)

TractSummaryTask

Objects within tract, multi-band stellar locus width N/A Base: TractAnalysisMultiFiltTask
(TractAnalysisTask)

TractMultiBandMeasTask

(not implemented??)

TractMultiBandSummaryTask

DIA sources (per-visit?)

DIA objects (not sure the
partitioning, per-patch?)

Solar System Objects (not sure
the partitioning, per-patch?)

Single-visit image ghost image control N/A VisitImageMeasTask VisitImageSummaryTask

Coadd image, single-band (per-
patch?)

ghost image control N/A PatchImageMeasTask PatchImageSummaryTask

Coadd image, multi-band (per-
patch?)

N/A PatchImageMultiBandMeasTask PatchImageMultiBandSumma
ryTask

Template image (subset of coadd
image??)

Injected sources per visit (subset
of sources within visit??)

transfer function for
individual visits

Injected sources within patch /
tract (subset of objects within
patch / tract)

transfer function for
coadd

Injected sources DIA (subset of
DIA??)

transfer function for
DIA

Injected sources SSO (subset of
SSO??)

transfer function for
SSO

Map (per-dataset?) coverage map,
survey properties

N/A MapMeasTask (??) N/A

Database Query (per-dataset?) random sampling
of source or object
tables

N/A QueryMeasTask (??) N/A

Calibration Products (per-
dataset?)

filter bandpass
performance

Anomalies (21 January 2020):

TractAnalysisMultiFiltTask
MchCatTractAggTaskConnections

, MatchedMultiCatalogAnalysisTaskMatchedCatalogMultiTask

Intermediate Data Products
Current dataset types:

matchedCatalogTract
matchedCatalog
matchedCatalogMulti

Questions:

Are these the intermediate data product names we want? Consistency with class names, etc.

Metric Name Conventions
KPMs should use the short names that are assigned to them in requirements documents (e.g., "PA1" or "GhostAF").

Metrics that are not KPMs should have names that are descriptive of what they are meant to capture. These should be camelCase with leading lower-
case. (A made-up example could be something like "colorOutlierFrac.") Note: abbreviated phrases is encouraged for brevity (as with "Frac" in the previous
example).

`faro` names each dataset type as "metricvalue_"+`connections.package`+`connections.metric`, where the .package and .metric are defined in the pipeline
yaml. The "package" is intended to specify what metrics package from `verify_metrics` contains this metric's definition (e.g., `validate_drp`). To facilitate
comparison to these metric definitions, many of the `connections.metric` names contain things like "_design" to specify the level to compare against (i.e.,
min/design/stretch goals).

Current dataset types:

metricvalue_info_nsrcMeasVisit
metricvalue_info_nsrcMeas
metricvalue_validate_drp_AB1_design
metricvalue_validate_drp_PA1
metricvalue_validate_drp_AD2_design
metricvalue_validate_drp_PF1_design_gri
metricvalue_validate_drp_AM3
metricvalue_validate_drp_TE1
metricvalue_validate_drp_TE2
metricvalue_validate_drp_AF2_design
metricvalue_validate_drp_AM2
metricvalue_validate_drp_AD1_design
metricvalue_info_AM1
metricvalue_validate_drp_AM1
metricvalue_validate_drp_PA2_design_gri
metricvalue_validate_drp_AF3_design
metricvalue_validate_drp_AD3_design
metricvalue_validate_drp_AF1_design
metricvalue_Sum_info_nsrcMeas
agg_sum_nsrc_metadata
metricvalue_summary_validate_drp_AB1_design
agg_summary_AB1_design_metadata
metricvalue_Sum_info_nsrcMeasVisit
agg_sum_nsrcVisit_metadata
metricvalue_pipe_analysis_wPerp
agg_sum_nsrc_config
agg_summary_AB1_design_config
agg_sum_nsrcVisit_config

Note that for a given dataset type, the measurements in different units of data (e.g., tract, band) are distinguished by their data id. One can find the
dimensions of a dataset type as follows:

registry.getDatasetType('metricvalue_validate_drp_PA1').dimensions

DimensionGraph({band, instrument, skymap, tract})

Questions:

Do we need the package name in the dataset type name?
Do we need design/stretch etc. in dataset type name?
How do we want to distinguish the aggregated results from the "per-unit-data" results?

Having a convention for the prefix will be important. For now, we consider "metricvalue_[granular]_" and "metricvalue_summary_". It
would be helpful to have distinct prefix for the granular and summary metric values. Not sure what is best name for "granular" metric
values.

How do we want to distinguish the same metric, but different units of data, e.g., patch vs. tract?
How do we want to indicate instances of the same metric, but with different configurations?

Pipeline Name Conventions

There are three "stages" to calculating metrics with `faro`: generating/compiling the input data, measuring the metric (i.e., "analysis"), and aggregating the
measured values. A full pipeline can then chain any number of these steps as needed.

metrics_pipeline_*.yaml: A pipeline consisting of calls to other pipelines (via "imports") that perform the separate stages of metric calculation begins with
the phrase `metrics_pipeline`. An example would be `metrics_pipeline_matched.yaml`, which executes `gen_inputs_matched.yaml`, `analysis_matched.
yaml`, and `agg_matched.yaml`.

If, as in the above example, the pipeline operates on a specific type of dataset or calculates particular type of metric, this should be made clear in the
pipeline name (to the extent possible; in this example, the metrics being calculated are all based on matched visits, so it is named `*_matched.yaml`). This

 is done for all types of pipelines so that it is clear which ones may need to be included together in a `metrics_pipeline`.

gen_inputs_*.yaml: The name of a pipeline that gathers the data to perform measurements on begins with `gen_inputs` (short for "generate" inputs). asse
mbly_*.yaml

analysis_*.yaml: The "analysis" pipelines are the ones that execute the metric measurements (i.e., perform analysis tasks).

agg_*.yaml: "agg" is short for aggregation - these are the pipelines that aggregate values into rolled-up, summary metrics.

Utility function name conventions

Utility function names are all lower case (and snake_case if needed). They should, to the extent possible, explain what the function is designed to return.
For example, `phot_repeat.py` is a module containing many photometric repeatability routines. Within this module, the functions have names such as
`calc_phot_repeat`.

NOTE: This is not currently true of most of the functions adapted from validate_drp – most of those have camelCase names such as `calcPhotRepeat`.

Notes/Discussion:

What is the purpose of in ? It doesn't seem to be used.MatchedCatalogsAnalysis.py metric_pipeline_tasks

QUESTIONS:

The three steps of metric measurement are assembly analysis aggregation. (We're proposing "assembly" instead of "gen_inputs".)
A: Proposal is to use: Preparation, Measurement, Summary

Change Multi XBand ("cross-band"; i.e., multiple filters)?
A: E.g. AB2. Proposal is to use MultiBand

In dataset type definitions, do we need the metrics package name? [Are all metrics required to have a definition in a .yaml metrics definition file
somewhere (as most currently do in `verify_metrics`)?]

A: Yes, we would like to retain this convention but update the metrics package name to be pointing more towards function we want to
than implementation (e.g., associated with a requirements document)
e.g validate_drp.yaml srd_performance.yaml. And separate out the non-normative metrics in validate_drp.yaml into (say) dm_metrics.
yaml

In dataset type definitions, do we need design/stretch, etc.? [This typically won't change the metric is measured. Could this instead be how
packaged in the Measurement object itself?]

A: We would like to avoid having the specification details in the dataset type name. Note that there are some requirements that have
different thresholds for minimum, design, and stretch, and hence the measurement is done in a different way.

In dataset type definitions, what conventions do we want for the prefix? For the summary metrics?
A:

Progress tracking:

lsst/faro/base/

lsst/faro/measurement/

lsst/faro/preparation/

lsst/faro/scripts/

lsst/faro/summary/

lsst/faro/utils/

pipelines

Questions/discussion:

The file contains some classes that are Summary tasks rather than Measurement lsst/faro/measurement/GeneralMeasureTasks.py
tasks. Propose that we create a new file in the summary directory to hold these general summary tasks, lsst/faro/measurement

./GeneralSummaryTasks.py
In , names the output with lsst/faro/measurement/GeneralMeasureTasks.py NumpyAggTask Measurement metricvalue_aggname_

. Do we want this naming behavior? (Is this task used anywhere? If not, maybe it should be? It seems to be a generally useful package_metric
task.)
Not sure what to do here: we moved the “Analysis” tasks (e.g.,) into . Our MatchedCatalogsAnalysis.py lsst/faro/preparation
proposal was to rename “Analysis” to “Meas”. But we already have in (it’s MatchedCatalogMeasureTasks.py lsst/faro/measurement
the one that contains, e.g., .) This potential naming ambiguity will be confusing. Should we rename the one that defines the particular PA1Task
KPM measurements (in measurements)? We could call it instead?MatchedCatalogMetricTasks

I moved all of the "Analysis" tasks to , and renamed them to things like . Files lsst/faro/measurement PatchMeasurement.py
containing individual metrics are now called (for example).PatchMetricMeasureTasks.py

	Metric Calculation Package Reorgnization

