
Architectural Prototype for the New Gen3 Registry
Goals

Provide a vision for how a implementation that uses different database schemas/namespaces (in the same database) for different Registry
users could be written, while deferring most of the work on that task for the future (instead assuming a "friendly-user / shared schema" model for
the time being).
Reduce usage of SAVEPOINTs and (SQLite) exclusive locking while maintaining concurrent transaction safety.
Adding vectorized dataset ingest (which involves obtaining autoincrement primary key values after insertion, and the interaction between that and
concurrent transactions and multi-layer Registries).
Adding vectorized collection-association (which involves replacing when UNIQUE constraints are violated, and the interaction between that and
concurrent transactions and multi-layer Registries).
Adding an "origin" field to dataset (and quantum) to give it a primary key that is more than just autoincrement.
Using integer surrogate IDs in primary and foreign keys even for entities uniquely identified by strings, such as dataset types and collections.
Supporting dynamic (on-demand) table creation, which will in general interrupt transactions and thus has to be treated with care.
Adding flexibility to the constraints on data ID + dataset type uniqueness within collections (desired for some combinations of datasets and
collections, but not all; see below).Dataset/Collection Constraints
Moving the validity ranges for calibration datasets from the dimensions system to the association between a dataset and its collection, so the
same dataset can have a different validity range in different calibration collections.
Better normalize the dimension columns in the dataset table(s) and add dimension columns to the quantum table(s), while abstracting over and
encapsulating the specific DDL possibilities that could be used to achieve this (see e.g.).Dataset and Collection Table Reorganization
Improve maintainability, even while adding all of the above sophistication. This is mostly about improving separation of concerns; Registry Reg

 is pretty much a classic right now. In particular, we need to separate various schema design concerns both from each other and istry god class
from the concern of adapting to the particulars of specific database engines.

I believe the architecture described below achieves all of these goals (even if it is sometimes vague about the details). It also addresses (in part) some
issues I didn't set out to work on at all:

It provides a vision for how to define a chained Registry across different database engines and backends. Such a Registry would not have all of
the functionality of a single-database Registry, but the architecture makes it clear which operations can always be supported and which
operations would be limited
It helps with schema migration problems by allowing different layers in a multi-layer Registry to have different schemas.
It reduces our unit testing surface, by making it possible to get coverage on tests for different database engines over a much smaller API.

Overview and Glossary
The new is a concrete class that defines the only interface (of those described here) that is considered public to code outside . It Registry daf_butler
is a thin wrapper around that performs error-checking, friendly error messages, and type coercion before delegating any real work to the RegistryLayer
classes below. In the near term, will have a single ; in a multi-layer future, it will have an ordered list of Registry RegistryLayer Registry Registry

 instances, and delegate to them in turn.Layer

RegistryLayer is a simple struct-like class that aggregates a instance and several "manager" classes responsible for different kinds of Database
entities that can exist in a .Registry

Database is an abstract base class whose instances represent a particular schema/namespace and provide low-level database operations. Database
subclasses correspond to different database engines (SQLite, Oracle, etc).

The manager classes are all abstract base classes that act as containers and factories for an associated "record" or "records" class (also an ABC, unless
otherwise noted below):

CollectionManager manages the database representation of collections and runs within a single layer, often via (a CollectionRecord
simple concrete struct) and (an ABC that allows limited updates to runs) instances.RunRecord
OpaqueTableManager manages the opaque tables used to store internal records. It acts as a container and factory for Datastore OpaqueTab

, which represents a single named table (which usually maps to a single instance).leRecords Datastore
DimensionTableManager manages the dimension element tables and their join tables. It acts as a container and factory for DimensionTable

, which represents the table(s) for a single dimension element.Records
DatasetTableManager manages the dataset tables and the tables that relate them to collections. It acts as a container and factory for Datase

, which represents the table(s) for a single dataset type.tTableRecords
QuantumTableManager manages the quantum tables and the tables that relate them to datasets. It acts as a container and factory for Quantum

, which represents the table(s) for a particular set of dimensions.TableRecords

All manager and records classes have a reference to the that backs their layer. interacts directly with the manager and records Database Registry
objects, but rarely (if at all, at least after construction) with .Database

The prototype itself is on branch , and mostly in the subpackage (more direct pointers to useful content appear u/jbosch/prototyping daf.butler.prototyping
later in this document). None of this code can be expect or even import cleanly, but the documentation for the interface classes is ready for review. The
implementation classes are best considered an in-depth thought experiment to check that the interfaces were viable.

Prototype Details

Changes to Concepts and Primitives

https://confluence.lsstcorp.org/display/DM/Dataset+and+Collection+Table+Reorganization
https://en.wikipedia.org/wiki/God_object
https://github.com/lsst/daf_butler/tree/u/jbosch/prototyping
https://github.com/lsst/daf_butler/tree/u/jbosch/prototyping/python/lsst/daf/butler/prototyping

The current codebase has classes for and that subclass (which is not used otherwise), while collections are always Run Quantum Execution
represented as strings. The relationship between a run and its collection is ambiguous and ultimately unsound - it provides a loophole that blocks us from
being able to guarantee unique filenames (at least). The prototype drops the class (and table), and instead treats a run as a kind of collection Execution
(see). Both runs and collections are now represented by strings in high-level code, and by and Dataset/Collection Constraints CollectionRecord RunRe

 (which provide access to the integer surrogate ID) within and its component classes. The host+timespan information provided by cord Registry Execut
 has now just been moved directly into the run and quantum tables.ion

Registering collections (not just runs) is now explicit, not something that happens implicitly when a collection is first used.

The prototype codebase currently uses new classes instead of ; has different classes that represent DatasetHandle DatasetRef DatasetHandle
different levels of knowledge about a dataset (in particular, "resolved" means we know its ID and origin, and that it exists). I'm not sure, in retrospect, that
the split into multiple classes was worthwhile, and it may be reverted, but this is largely tangential to the rest of the architecture, and it is worth not
reviewers' time to think about.

The prototype codebase also uses special classes to represent iterables of and . These were motivated in large part DatasetHandle DataCoordinate
by a desire to have containers/iterables that remember what "optional" aspects their elements have - in particular, whether datasets are resolved and data
ID are expanded. The existing prototype code doesn't really utilize this much, and they may not be a part of the final design. I'd like to see how they
interact with the high-level Registry interface and particularly its query operations before deciding; they could also be a very nice way to represent query
results.

Dataset/Collection Constraints

The prototype defines two new enumerations that together describe the kinds of constraints we place on the datasets that can be in a collection.

First, there are three types of collections:

https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/collections.py#L21

class CollectionType(enum.IntEnum):
 """Enumeration used to label different types of collections.
 """

 RUN = 1
 """A ``RUN`` collection (also just called a 'run') is the initial
 collection a dataset is inserted into and the only one it can never be
 removed from.

 Within a particular run, there may only be one dataset with a particular
 dataset type and data ID, regardless of the `DatasetUniqueness` for that
 dataset type.
 """

 TAGGED = 2
 """Datasets can be associated with and removed from ``TAGGED`` collections
 arbitrarily.

 For `DatasetUniqueness.STANDARD` dataset types, there may be at most one
 dataset with a particular type and data ID in a ``TAGGED`` collection.
 There is no constraint on the number of `DatasetUniqueness.NONSINGULAR`
 datasets.
 """

 CALIBRATION = 3
 """Each dataset in a ``CALIBRATION`` collection is associated with a
 validity range (which may be different for the same dataset in different
 collections).

 There is no constraint on the number of datasets of any type or data ID
 in ``CALIBRATION`` collections, regardless of their `DatasetUniqueness`
 value.

 There is no database-level constraint on non-overlapping validity ranges,
 but some operations nevertheless assume that higher-level code that
 populates them ensures that there is at most one dataset with a particular
 dataset type and data ID that is valid at any particular time.
 """

and (in this respect) two different kinds of dataset types:

https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/collections.py#L21

https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/core/datasets/type.py#L40

class DatasetUniqueness(enum.IntEnum):
 """Enumeration indicating the kind of uniqueness constraints to
 define on data IDs of this dataset type.
 """

 STANDARD = 2
 """There may only be one dataset with this dataset type and a particular
 data ID in a `~CollectionType.TAGGED` collection.
 """

 NONSINGULAR = 3
 """There may be any number of datasets with this dataset type and a
 particular data ID in a `~CollectionType.TAGGED` collection.
 """

This table summarizes the constraints we place, given both of these:

DatasetUniqueness.STANDARD DatasetUniqueness.NONSINGULAR

CollectionType.RUN data ID + dataset type data ID + dataset type

CollectionType.TAGGED data ID + dataset type no constraint

CollectionType.CALIBRATION no constraint* no constraint

* there are no constraints on CALIBRATION collections in the database, but we expect the higher-level code that produces them and assigns validity
ranges to ensure that there is no duplication within each validity range when that makes sense for the dataset type.

Implications for Calibration Products Production

The introduction of CALIBRATION collections with validity ranges is tied to the removal of validity ranges from the dimensions system, where they are
currently linked to the dimension. Whether the dimension itself is removed as well depends on how we calibration_label calibration_label
want to use RUN collections when building master calibrations.

Once a validity range is known for a master calibration, it can be associated with a calibration collection, and that validity range added to that association
can be used along with the rest of its data ID (e.g. for bias, for flats) to retrieve instrument+detector instrument+detector+physical_filter
it any given point in time. I am relatively confident that this a solid model for master calibration datasets, at least once a complete suite of using
calibrations is produced.

Before it is associated into a calibration collection, however, we still need a way to uniquely identify a master calibration, at the very least so we can later
identify which dataset we're associating with each validity range. In Gen2, we used a field for this, which no one was happy with, and that's calibDate
what the was intended to replace (with the of that label still very much TBD; it could be date based, or computed from the calibration_label content
constituent visits, or a counter...): the full data ID for a bias would be . With no instrument+detector+calibration_label calibration_label
longer needed for validity ranges, we now have two ways to proceed:

We could continue to use as part of the data IDs for master calibrations (and possibly rename it to reflect how we expect calibration_label
to populate it, once that's decided). This would allow us to have multiple calibrations of the same type and "rest of the data ID" in the same run (i.
e. multiple master biases for the same , which would be mapped to different validity ranges), which would be instrument+detector eventually
most natural if we expected to produce them at once (i.e. in a single execution). But we would have to add logic to the lookup QuantumGraph
within calibration collections to not require the part of the data ID there, because it would be redundant with the validity calibration_label
range lookup.
We could drop entirely, and put master calibrations that would otherwise conflict in different runs as they are created, so calibration_label
(e.g.) within any run an lookup for bias would be fully qualified. This would be the most natural approach if we really do instrument+detector
only want to produce master calibrations one-set-at-a-time with explicit validation before blessing them (which is here expressed as assocation
with calibration collection), and it saves us from having to cook up something to put in the string. But as all other calibration_label Quantu

 execution puts all outputs datasets into a single run, we would either need to add more special-casing or levels of indirection to that mGraph
higher-level code or rule out any single- method of producing conflicting master calibrations. (To be clear, this would be a QuantumGraph
prohibition on e.g producing multiple biases for the same detector in a single QG; there would not be any prohibition on producing a single master
bias for each detector in one QG).

The Class and SQLAlchemy UsageDatabase

https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/core/datasets/type.py#L40

Database fully encapsulates the SQLAlchemy connection and engine objects, requiring all write operations to go through specialized methods. That
works because we seem to only need relatively simple version of these operations, and in at least some cases it's necessary because we depend on non-
standard functionality that most database engines nevertheless support, but in different ways (e.g. ,). Encapsulating write operations also sync replace
allows complete control over transactions, including the handling operations that can interrupt transactions (both table creation and sync, which Database
may require retries inside its own transaction to be safely concurrent for some database engines). We consider performing any operation that could
interrupt a transaction in within a transaction block a logic error, regardless of whether it actually would in the database in question. Happily, all of our high-
level operations that need to be implemented on top of transaction-breaking low-level operations (e.g. registering new dataset types, adding new
collection) seem to be the kind where this is not a major problem.

Database does not attempt to provide much of an abstraction around SQLAlchemy's tools for constructing and executing SELECT queries. Fully
encapsulating SQLAlchemy for SELECT queries would be a huge waste of our time, as we'd essentially be reimplementing a large chunk of
SQLAlchemy's own abstracts. And we don't have to – while we will be writing fairly complex queries, we don't expect to need to use extensions to
standard SQL.

Table definition and creation follows a middle path. We have (not just in the prototype, but on master) for representing table, field, and our own classes
foreign key specifications. The manager and records objects use these to describe what they need to a , which can then customize the Database
translation to SQLAlchemy before returning the SQLAlchemy representation to the manager and records objects. A major change from the current Regist

 implementation is that the schema is now defined programmatically by the manager and records classes, instead of in YAML configuration. This keeps ry
them close to the code that depends on them, and it allows us to encapsulate normalization and other schema design changes behind stable Python
interfaces.

The result of these choices is that and objects (and the objects that comprise them) are sqlalchemy.sql.FromClause sqlalchemy.schema.Table
quite common at the manager and records interface level. Other SQLAlchemy objects are mostly hidden behind , and no SQLAlchemy usage is Database
exposed in the public interface.Registry

The is nominally complete, in that no further changes or additions seem necessary right now (aside perhaps from prototype for the interfaceDatabase
clearer expectations on exceptions that will be raised for different error conditions). Small changes as it transitions from a prototype to production code are
of course expected. There is no concrete implementation of in the prototype, but the base class does provide default implementations for most Database
methods (and will provide more in the production version). The ABC does have complete API documentation, and that is worth reading for reviewers
interested in more detail.

Manager and Records Classes

The manager and records interfaces are structured largely to encapsulate decisions about to map our in-memory data structures to tables, including both
normalization/denormalization and vertical/horizontal partitioning. This encapsulation solves an number of problems:

Adding new implementations of the same interfaces without removing the old ones would let us continue to support old repositories after a
schema migration without changing anything on-disk or in-database.
Different aspects of the schema handled by different interfaces, so we can experiment with different combinations of choices without needing a
combinatorial number of code branches.
When we have multiple layers, different layers will be able to use different manager and record subclasses within the same .Registry

In some cases, these interfaces also provide an abstraction over whether entities that are relatively few in number (collections, dataset types) are
aggressively fetched from the database to avoid repeat queries, fetched only when needed, or something in between (i.e. cached after first use).

The separation into managers and records classes establishes a boundary between operations that depend only on "static" tables that can be expected to
always be present in any layer (all a manager class interacts with) and those that may also depend on a "dynamic" table (one that is only created in a layer
when needed). Table creation can be transaction-interrupting, and the same is actually true of the operation we would use on the static Database.sync
"meta" tables that remember which dynamic tables exist, so it's very important that the API make it clear when table creation could happen. The two-class
pattern achieves this by putting all transaction-interrupting operations inside the manager class's method, which is one of two ways a records register
object can be obtained (and the other, a method on the manager, simply returns if no such records object already exists). The get None CollectionMa

 is a partial exception to this pattern - we do not expect to need any dynamic tables for collections, but we do need to use when nager Database.sync
registering a new collection.

The manager and records interfaces do not attempt to encapsulate decisions on what kinds of primary keys we would use for different entities. The
interfaces explicitly require each entity to have one of three distinct kinds of primary key; it turns out that the kind of primary key has implications even for
the primitives that represent this entities in Python, so abstracting over those choices does not seem worth the effort. In particular:

Datasets and quanta are identified by autoincrement integer IDs, and because these are the only unique identifiers for these (or at least the only
simple ones), we use compound primary keys that include another "origin" integer that allows them to be transferred between repositories or
layers without rewriting IDs (which assumes that we have some way of assigning unique origin values across potentially-related repositories).
Collections (including runs) and dataset types are identified by string names that we require users to provide, but we internally (and only
internally, never in public Registry APIs) use a surrogate autoincrement integer primary key for these. As these IDs are completely internal, we
never try to maintain them when transferring between data repositories or layers, and there's no need for a two-component ID that includes an
origin value.
Dimensions have integer or string identifiers that are provided by users or higher-level code, and we use those directly as primary keys
(essentially demanding that higher-level code guarantee their uniqueness).

https://github.com/lsst/daf_butler/blob/52fd0ada37a73da0ef60c6fc5067ce7cb97bb45e/python/lsst/daf/butler/prototyping/interfaces/database.py#L362
https://github.com/lsst/daf_butler/blob/52fd0ada37a73da0ef60c6fc5067ce7cb97bb45e/python/lsst/daf/butler/prototyping/interfaces/database.py#L534
https://github.com/lsst/daf_butler/blob/52fd0ada37a73da0ef60c6fc5067ce7cb97bb45e/python/lsst/daf/butler/core/schema.py#L317
https://docs.sqlalchemy.org/en/13/core/selectable.html#sqlalchemy.sql.expression.FromClause
https://docs.sqlalchemy.org/en/13/core/metadata.html#sqlalchemy.schema.Table
https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/database.py#L80

Another common pattern in the manager and records interfaces is the presence of one (or occasionally two) methods that return select sqlalchemy.
 objects. Those may represent tables directly if appropriate, but more frequently will represent SELECT queries that can be used as sql.FromClause

subqueries to form more sophisticated queries. This approach has already been worked out to a large extent on master in the , and queries subpackage
while that will need changes to work with the new prototype, I'm not concerned about the viability of the approach overall. The methods (and the select
higher-level query APIs that utilize them) are significant for the extension to multi-layer registries, however, because they represent the only operations for
which a straightforward "try layers on order until one succeeds" (or an equally simple variant on that) doesn't work. Instead, the query system for a multi-
layer would call methods on all layers, drop those for which the result is (which may happen if, e.g., the layer knows it has no Registry select None
datasets of a particular dataset type), and combines the rest via UNION or UNION ALL before passing the result of that to the query builder system (which
could otherwise remain largely unchanged). That means these operations are the only operations that cannot work in general on a backed by Registry
layers with heterogeneous database engines, and even there they could sometimes work if the logic is clever enough to notice when all layers that actually
contribute to a particular query are backed by the same connection.

The manager and records interfaces sometimes depend on each other:

DatasetTableManager/Records depends on instances to both translate names toCollectionManager/CollectionRecord/RunRecord
/from their internal integer IDs, and to add foreign key fields to its own tables that reference the collection and run tables.
DatasetTableManager/Records depends on the subclass (but does not require an construction QuantumTableManager/Records
instance) in order to add foreign key fields that reference the quantum tables.
QuantumTableManager/Records depends on both and CollectionManager/CollectionRecord/RunRecord DatasetTableManager

 instances for both foreign key fields and mapping database IDs to Python representations./Records

The abstract base classes for all of the manager/records pairs are mostly complete and fully documented in the prototype, and are worth looking at for
further details:

CollectionManager/CollectionRecord/RunRecord
OpaqueTableManager/Records
DimensionTableManager/Records
DatasetTableManager/Records
QuantumTableManager/Records

There are probably some operations missing (querying collections and handling composite datasets come to mind), but enough is present to give me
confidence that the overall architecture is stable. I believe all operations that involve nontrivial interactions between different components have been
included.

The prototype also includes , but these are undocumented and completely untested; as noted above, they were reference implementations for all of these
written primarily as thought experiments to validate the interfaces (though I do intend to copy from them heavily when writing the production versions). I'm
not sure we will ever need more than one implementation for most of these (collections and opaque tables in particular are pretty straightforward), but it
nevertheless seems prudent to separate interface from implementation for all of them.

Registry Itself

While there is a class in the prototyping directory, it's not nearly as complete as the rest of the prototype I've described here - not only is it Registry
interface-only right now (despite the vision of it being a concrete class), but I haven't actually looked at it at all since the rest of the prototype came together
in its current form. I do expect there to be changes to the public API associated with moving to the prototype, but these should be Registry
straightforward: separating transactional from transaction-breaking operations, adding vectorization, and using more consistent verbs for similar operations
on different entities.

I'm of two minds about whether to continue the prototyping work to extend it to itself, or to just dive into moving the existing prototype ideas into Registry
the production version and updating the Registry APIs in the process. I don't think I need to treat the implementation of itself as another Registry
thought experiment to establish the viability of the overall architecture of the prototype, but I do imagine that doing so would help clarify and stabilize the
details of the manager/records and Database APIs before those go into active use. This needs to be weighed against the need to start actually putting a
lot of this functionality onto master sooner to unblock others (especially the vectorization and SAVEPOINT reduction that will speed up at-scale ingest to
the point where it's actually usable).

Remaining Challenges for Multi-Layer Registry
In a single-layer Registry, all of our logical foreign key constraints and unique constraints can be real database constraints. This is not true in a multi-layer
Registry:

Logical foreign key constraints would need to reference the union of several real tables, which simply isn't possible in most (any?) database
engines. This can be mitigated in some cases by copying database entities into a layer when they are used in that layer; this seems like the right
approach for collections and dataset types, which will always small numbers of (relative to datasets and quanta, and at least some
dimensions). It is certainly the wrong approach for other entities - most user-level registries will never need to include dimension tables, as any
they'll be able to exclusively use those defined in a shared base layer. For these we need to evaluate how hard it is to impose these constraints
in higher-level code, and how problematic it is if we can't do so rigorously or concurrently.
Logical unique constraints would either need to be applied to the union of several real tables, or we would need to resolve duplicates in favor of
higher-priority layers when combining them in queries. The former would again involve imposing the constraint outside the database, and here
that definitely seems difficult while also being important to do rigorously (particularly for dataset/collection constraints). On the other hand, trying
to resolve duplicates in query results seems like an expensive, always-on solution to a rare-in-practice problem. Some way of carefully
guaranteeing less about uniqueness or duplication in query results that still meets higher-level use cases seems the better way to go, if we can
thread that needle.

https://github.com/lsst/daf_butler/tree/u/jbosch/prototyping/python/lsst/daf/butler/core/queries
https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/collections.py
https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/opaque.py
https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/dimensions.py
https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/datasets.py
https://github.com/lsst/daf_butler/blob/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/interfaces/quanta.py
https://github.com/lsst/daf_butler/tree/u/jbosch/prototyping/python/lsst/daf/butler/prototyping/implementations

The other obvious gap in this design in moving to multiple layers is in Registry construction and configuration. I think this would need to involve at some
level specifying concrete class names for the managers/records and Database in configuration, but there are simply a lot of details to work out. It does
seem to be a much simpler problem if we prohibit "rebasing" of layers - once some layer B has been created on top of some other layer A, one would
never be able to load B without A. Hopefully we will be able to maintain flexibility in the opposite direction (not requiring B in order to load A), of course.

	Architectural Prototype for the New Gen3 Registry

