
Data Butler - Current Design

What is the Data Butler

Manages repositories of datasets
Finds datasets by scientifically-meaningful key/value pairs
Can automatically "rendezvous" one dataset with another based on key values

Example: calibrations linked by time
Retrieves datasets as in-memory objects
Persists in-memory objects to datasets
Implemented in Python; no access from C++

Definitions

Repository

Collection of datasets
Configuration for accessing datasets
Metadata databases for finding datasets
Version (e.g. as of particular time)

Dataset

The persisted form of an in-memory object
Can be a single item, a composite, or a collection
Examples: / , , , , , / /int long PropertySet ExposureF WCS PSF set list dict

Persistable class

A Python class (often SWIGged from C++) that can be persisted and retrieved
Must provide methods for doing persistence and retrieval

Dataset type

A label given to a group of datasets reflecting their meaning or usage
Used by convention by Tasks for their inputs and outputs
Examples: , , calexp src icSrc

Dataset class

A labeled set of basic access characteristics serving as the basis for a group of dataset types
Used to define new dataset types

Storage

A mechanism for reading/writing a dataset to/from an in-memory object
Examples: , FitsStorage SqlStorage

Transport

A mechanism for providing access to data
Examples: , , , file: http: sqlite: mysql:

DataId

A dictionary of key/value pairs

DataRef

A packaged with a for access to datasetsDataId Butler
Can be used with multiple dataset types (if the keys are appropriate)

DataRefSet

Logically, a set of sDataRef
May be implemented as an iterator/generator
Based on an input dataset type, but s can be used with other dataset typesDataRef

All s point to an existing input dataset at time of generationDataRef

 Mapper

Not used by application code; only used via Butler
Driven by per-repository configuration
Camera-specific subclasses recorded in repository configuration
Obtains a location template based on dataset type

Inherits from dataset class
Includes URL path with transport, storage method, optionally Python type
Includes filesystem locations and database tables/queries
Read-only and write-only types

Expands an input with additional key/value pairs (fixed and/or as-needed) needed to expand location templateDataId
Queries registry databases in input repositories as needed
Globs in filesystem if needed

Expands location template into a ButlerLocation
Optionally can provide methods for standardizing (post-processing) retrieved data
Can be used to bidirectionally map s to numeric identifiersDataId

By treating numeric identifier as a dataset or as a single key's valueDataId
Uses special IdStorage

Provides utilities for subclasses

Maintain templates for dataset types in repository configuration
Look up key/value pairs using equality or range joins in registry databases
Glob for key/value pairs in filesystem
Record metadata of new datasets in registries
Maintain registry of registries

ButlerLocation

All location information needed for a Storage
May include:

Expanded path template(s)
Python object class name
Storage class name
DataId
Additional key/value pairs

Butler

Obtains mapper class name from repository
Calls to translate into locationMapper DataId
Calls appropriate Storage to retrieve or persist data
Repository identified by root (URL) path
Zero or more read-only input repositories

Input repositories identified by role
Role can be used in output repository configuration

One output repository
Input repositories recorded in output repository with roles
Initial output repository configuration derived from camera-specific defaults and input repository overrides
User can provide overrides for output repository configuration
Tasks can add to output repository configuration

Calibration (and other?) repositories permitted
Input and output repositories

Provides utility for searching read-only parent repositories

Butler Interface

__init__(outputRepo, inputRepos=None)
outputRepo is a repository URL (string)
inputRepos is a map from role name (string) to repository URL

get(self, datasetType, dataId={}, **kwArgs)
returns object retrieved using with keyword argument overridesdataId

put(self, obj, datasetType, dataId={}, **kwArgs)
persists using with keyword argument overridesobj dataId
The (or actually either its or a) is allowed to notice that the identical has been persisted before and not Butler Mapper Storage obj
persist it again

This also applies to components of composite s, which can be persisted as a reference to the originalobj
getKeys(self, datasetType=None)

returns list of keys appropriate for or all keys known for output repositoryDataId datasetType
getDatasetTypes(self)

returns list of known dataset types
createDatasetType(self, datasetType, datasetClass, pathTemplate, **kwArgs)

creates a new based on the using the provided path template and keyword argumentsdatasetType datasetClass
getRefSet(self, datasetType, partialDataId={}, **kwArgs)

returns enumerating all existing datasets of using with keyword argument overridesDataRefSet datasetType partialDataId
defineAlias(alias, datasetType)

Henceforth, any use of " " with this becomes equivalent to @alias Butler datasetType

What's new?

ButlerFactory is gone.
getDatasetTypes and are passed through from the .createDatasetType Mapper
subset is renamed to to be more descriptive; its functionality subsumes the old .getRefSet queryMetadata
datasetExists is gone, since only returns datasets that exist.getRefSet
level arguments have been removed, as the concept turned out to be useless in practice.
put can handle duplicates (for configurations and provenance or for sharing objects).
Much-requested dataset type aliasing facility enables s to handle, e.g., any " "-like dataset.Task src

Mapper Interface

Interface used by :Butler

__init__(self, repo)
repo is an output repository

map(self, datasetType, dataId)
returns the corresponding to the for the given ButlerLocation dataId datasetType

getKeys(self, datasetType)
returns list of keys appropriate for or all keys known for output repositoryDataId datasetType

getDatasetTypes(self)
returns list of known dataset types

createDatasetType(self, datasetType, datasetClass, **kwArgs)
creates a new based on the using the keyword argumentsdatasetType datasetClass

listDatasets(self, datasetType, partialDataId={}, **kwArgs)
returns or generates set of s enumerating all existing datasets of using with keyword argument DataId datasetType partialDataId
overrides

canStandardize(self, datasetType)
returns if the can be standardizedTrue datasetType

standardize(self, obj, datasetType, dataId)
returns the standardized version of , given its and obj datasetType dataId

Interface for subclasses:

(TBWritten)

What's new?

createDatasetType has been added.
listDatasets replaces the old .queryMetadata
validate was never used and is gone. (It was originally supposed to do something like 's 's .)CameraMapper Mapping need()
Much lookup functionality is now intended to be performed by custom Storage classes, like .IdStorage

	Data Butler - Current Design

