
Dax Co-work 2019-09-04 Meeting notes

Date

04 Sep 2019

Attendees

Igor Gaponenko
Kenny Lo
John Gates
Andy Hanushevsky
Unknown User (npease)
Fritz Mueller
Andy Salnikov
Fabrice Jammes
Unknown User (cbanek)

Goals

Discussion items

Time Item Who Notes

Promethus Demo Fabrice

Query ID  Some queries don't get listed in the query history because they fail before the query id gets generated (parse errors 
fall into this category).

Can we 1) generate earlier? 2) Replace with UUID? 

...it's possible, not too hard, to allocate query ids earlier & record failed parse queries in the query history.

There are some strong feelings about UUIDs vs. sequential integer IDs. This choice is somewhat orthogonal to 
generating the query ID earlier.

We can't totally get rid of the need for an identifier that's used early between the proxy and the top level of the czar 
plugin.

TBD what to do,   will make an executive decision at some point.Fritz Mueller

Qserv logs not getting into 
Elastic Search

It looks like there's a networking problem. We're hoping a restart will fix things. If not, we'll contact NCSA and have 
them jiggle the handle.

UPDATE:   was able to get things working again. Some changes had been made to the Unknown User (cbanek)
system configuration and who did it was not immediately obvious. She may follow up on that.

https://confluence.lsstcorp.org/display/~gapon
https://confluence.lsstcorp.org/display/~kennylo
https://confluence.lsstcorp.org/display/~jgates
https://confluence.lsstcorp.org/display/~abh
https://confluence.lsstcorp.org/display/~npease
https://confluence.lsstcorp.org/display/~fritzm
https://confluence.lsstcorp.org/display/~salnikov
https://confluence.lsstcorp.org/display/~jammes
https://confluence.lsstcorp.org/display/~cbanek
https://confluence.lsstcorp.org/display/~fritzm
https://confluence.lsstcorp.org/display/~cbanek


An effect of changes in the L
  service configuration ogger

on the performance and 
resource utilization of Qserv 
czar

Igor The study was triggered by the following observations on Qserv    in    (   at ):czar PDAC lsp-int NCSA

the log file  of the service grows quite rapidly over time. Depending on how heavily /qserv/log/mysql-proxy-lua.log
the service is used the file could grow as fast as  .100 GB / 24 hours
the XRootD/SSI service (tagged as xrdssi.msgs in the log files) was found responsible for nearly 50%  of all 

postedlogged messages. These messages were   at the    level.DEBUG
when Qsev    is processing queries it's aggregate CPU consumption almost never exceeds     (roughly - czar 400%
4 cores). Note that the machine is equipped with x2 CPUs (14 core per each CPU, or 28 cores in total).
when  is put under a heavy load (a typical scenario: launching a few   or alike queries within a czar shared scan
minute) lists of queued tasks on the worker nodes grow quite slowly, as if Qserv    is unable to push chunk-czar
specific queries to workers. This prevents Qserv workers to get into the most favorable mode an process 
multiple queries in the    regime.shared scan

This let to a theory that Qserv   wishing   could be one of the potential bottlenecks limiting the performance Logger czar
of the service. To test this theory an alternative configuration of the    at Qserv   container was Logger master
attempted. The configuration is now passed into the container (at its start time) as the following Docker volume:

% docker inspect qserv
...
        "Mounts": [
            {
                "Type": "bind",
                "Source": "/qserv/config/log4cxx.czar.properties",
                "Destination": "/qserv/stack/stack/current/Linux64/qserv
/tickets.DM-19156-g007a958c02/share/qserv/configuration/templates/etc
/log4cxx.czar.properties",
                "Mode": "ro",
                "RW": false,
                "Propagation": "rprivate"
            },
...

The first set of tests conducted within the effort was aiming at testing if disabling messages from  would xrdssi.msgs
 During the test Qserv    was reconfigured to have any affect on the performance of the service. czar's Logger increase 

the default threshold of the logger from    to  . Unfortunately, the test didn't show any improvements DEBUG ERROR
(apart from the expected reduction of the log file payload by a factor of 2).

The second test was of just an expatiation of the first one by suppressing    messages logged by Qserv  belowALL czar
level . This   result in a noticeable growth of the CPU consumption (by the   ) from  up to (ERROR DID czar 400% 700 % 
which had never been seen earlier). It was also observed that the number of tasks at the worker queues was growing 
much faster (on the order of 10 or much higher).

: the   is obviously one (though, not the only) of the CONCLUSIONS (directions for further studies) Logger
bottlenecks within Qserv  . It's not clear though, what exactly is happening, if there is an internal   (acting as czar mutex
a single point of congestion for Qserv threads), or if there is a general performance burden for using C++ iostream  cl

 (which is behind the implementation of the   ) due to alleged dependency on   (as speculated by ass Logger locale And
 ).y Hanushevsky

Action items

 

https://confluence.lsstcorp.org/display/~abh
https://confluence.lsstcorp.org/display/~abh

	Dax Co-work 2019-09-04 Meeting notes

