
Catalog Simulations Documentation
Installation and setup

For instructions on installing the simulations code, go .here

Once you have installed the sims packages, you will need to setup the CatSim packages using this command

setup sims_catUtils -t sims

Any time you open a new shell and want to run CatSim in it, you need to

source loadLSST.bash
setup sims_catUtils -t sims

The first will add eups (the LSST package management software) to your PATH. The second will tell eups to add the CatSim code to your PATH.

Note: If you want to run the CatSim-GalSim interface which allows you to seamlessly convert CatSim catalogs into GalSim images, you should replace
sims_catUtils with sims_GalSimInterface in the commands above.

Organization of Software

The software in the LSST stack is organized using the package management program EUPS. Broadly speaking, every time you install a new version of
the stack using

eups distrib install lsst_sims -t sims

the packages that you download get placed in their own unique directory tree that looks like

$LSST_HOME/yourOperatingSystem/packageName/versionNumber/

where LSST_HOME is set by the loadLSST.bash script, yourOperatingSystem will be either `DarwinX86` (Mac) or `Linux64` (Linux), packageName is the
name of the LSST software package (e.g. sims_photUtils, daf_base, etc.), and versionNumber will look like either a Git tag or a Git SHA-1. When you tell
EUPS to setup a particular version of a package using

setup packagName -t versionTag

as in

setup sims_catUtils -t sims

EUPS takes the directory associated with the specified package version (and all of its dependencies) and appends it to your PATH.

To see all of the versions of a package that EUPS knows about, use

eups list -v packageName

This will print out the path to every version as well as the version tag (e.g. 'sims', 'current', or an LSST-specific build number `bNNNN`) associated with that
version. Note that versions of a given package can have multiple versionTags. This means that they are associated with multiple builds of the LSST
stack. The version that is actually in your path will also be marked as 'setup'. Thus, to see a list of all of the packages that EUPS has setup, do

eups list -v | grep "setup"

All of this is to say that if you ever need to inspect the source code of a package you are using, you can find its base directory using 'eups list' as described
above. Note that once you are in the base directory, you will still need to do some exploring to find the code you are looking for. For example, the source
code for the sims_photUtils package is actually stored in

$LSST_HOME/yourOperatingSystem/sims_photUtils/versionNumber/python/lsst/sims/photUtils/

https://confluence.lsstcorp.org/display/SIM/Catalogs+and+MAF

This directory structure was implemented for the sake of unambiguous module importing in the stack's python code.

Tutorials

Note: to run these tutorials, you will need to be able to connect to the University of Washington databases. Instructions for accessing these
databases can be found .here

You will find tutorial scripts and iPython notebooks in

$LSST_HOME/yourOperatingSystem/sims_catUtils/yourVersion/examples/tutorials/

yourOperatingSystem will be 'DarwinX86' for Mac users and 'Linux64' for Linux users. yourVersion denotes the version of the sims_catUtils package that
you installed. This will likely look like a Git SHA-1.

There is also a separate GitHub repository containing example iPython notebooks created for the University of Washington LSST group's internal
meetings. These can also be helpful in learning how to use the CatSim stack. The repository can be found and can be cloned usinghere

git clone https://github.com/uwssg/LSST-Tutorials.git

Basic CatSim philosophy

The CatSim stack principally exists to create catalogs from simulated universes. The default simulated universe that CatSim accesses lives on a machine
at the University of Washington called "fatboy". This simulated universe is really a database that consists of a distribution of galaxies drawn from the
Millennium N-body simulation, and Milky Way stars generated with the GalFast software. Even though catalogs are generated by querying fatboy's
database, CatSim is designed so that the user should never have to write any raw SQL queries. This is due to the way the catalog-generating classes in
CatSim have been written. In broad strokes:

The user instantiates a daughter of the class which is in charge of actually writing the catalog. This is the class that contains InstanceCatalog
information regarding what astronomical objects and what data regarding those objects should be written to the catalog.

The user passes the InstanceCatalog an instantiation of a daughter of the class. The class is the class CatalogDBObject CatalogDBObject
which actually manipulates the connection to fatboy. Specific classes are written to connect to specific tables in the fatboy CatalogDBobject
database. Thus, there is one class for galaxies, a different class for Solar System objects, a different CatalogDBObject CatalogDBObject Ca

 for main sequence stars, a different t for white dwarfs, etc. daughter classes provide talogDBObject CatalogDBObjec CatalogDBObject
one other purpose: naming conventions for data columns vary between fatboy and the classes (and, indeed, between tables InstanceCatalog
in fatboy). Declination is called in the galaxy table but in the star tables. classes provide simple mappings that dec decl CatalogDBObject
smooth over these differences and put all of the database columns into a uniform syntax.

The user also passes the an instantiation of the class. This is the class which contains data about InstanceCatalog ObservationMetaData
the state of the simulated telescope. For the purposes of generating a catalog, the provides the RA and Dec at which ObservationMetaData
the telescope is pointed as well as the size and shape of its field of view (i.e. it controls the question "which objects in fatboy's database are
actually seen by my telescope and thus should be written to my catalog?").

When you ask your to write itself out, what actually happens is that the performs a query on fatboy using InstanceCatalog CatalogDBObject
information from the to tell it which objects to return and information from the to tell it what data columns ObservationMetaData InstanceCatalog
associated with those objects to return.

The Framework Overview page explains how these three structures interact to create a simulated catalog.

The Code Overview page explains the contents of the different source code packages involved in CatSim.

The CatSim-GalSim documentation page refers users to examples explaining how CatSim interfaces with GalSim.

The Database Schema page lists the tables and columns provided in the University of Washington simulation databases.

The Database Contents page explains the physical origins of the tables referenced in the Database Schema page above.

The Database Object page explains the functionality provided by the CatSim database interface classes.

The Provided Getters page list the calculated columns provided by the mixin classes distributed with CatSim.

The How to Write Your Own Getter page explains how to write your own getters to calculate new quantities from those provided by the database.

The OpSim Query page explains how to use CatSim to query OpSim runs.

The Simulated Photometry page explains how to write getters to calculate magnitudes in non-LSST bandpass systems.

The Variability Model page explains how variability models are implemented in CatSim.

The SED page explains the spectral energy density models distributed with CatSim.

The Throughputs page explains the throughput models (telescope response curves, atmospheric extinction, etc.) distributed with CatSim.

https://confluence.lsstcorp.org/display/SIM/Accessing+the+UW+CATSIM+Database
https://github.com/uwssg/LSST-Tutorials
https://confluence.lsstcorp.org/x/84GX
https://confluence.lsstcorp.org/x/moCp
https://confluence.lsstcorp.org/display/SIM/CatSim-GalSim+Interface
https://confluence.lsstcorp.org/display/SIM/Database+Schema
https://confluence.lsstcorp.org/x/mIGp
https://confluence.lsstcorp.org/x/NgAjAQ
https://confluence.lsstcorp.org/x/QwC3
https://confluence.lsstcorp.org/x/FgG3
https://confluence.lsstcorp.org/x/LIKX
https://confluence.lsstcorp.org/display/SIM/Simulated+Photometry+in+CatSim
https://confluence.lsstcorp.org/x/PgC3
https://confluence.lsstcorp.org/x/MgG3
https://confluence.lsstcorp.org/x/PAG3

	Catalog Simulations Documentation

