
Proposed SUIT and related release processes

Firefly core
Firefly core release process
LSST deployment configuration for "vanilla" Firefly core releases

Portal Aspect (SUIT)
SUIT release process (proposed)
Portal Aspect online help

Other IPAC-maintained packages
firefly_client (Python API for communication with a Firefly session)
firefly-api-access
jupyter_firefly_extensions
firefly_widgets

Other Firefly-related LSST-maintained packages
display_firefly (Firefly-specific back end for afw.display)

See also (SUIT Release https://docs.google.com/document/d/15QSbahJKfq616JM0IrC6Xb7ywMJmlPggNk5iAP15ltY/edit#heading=h.utsrnzvuqwsv
Procedure Tailoring).

Firefly core
The Firefly package comprises both a library of visualization components (for images, tables, and table-based scientific plots) and a set of basic Web
applications built on those components. The system combines a Java-based server side and a JavaScript-based client side. Firefly is designed to be
deployed on a server. In practice most deployments include multiple servers with a load-balancing front end (typically based on or Tomcat NGINX Apache

). Firefly is open-source and maintained on Github at . HTTP Server Caltech-IPAC/firefly

Firefly was developed originally to support the astronomical archives at , was substantially revised and extended to meet the needs of the LSST IRSA
project, and benefits from contributions from other IPAC projects.

Currently "vanilla Firefly" deployments are used on the visualization server, as well as to serve endpoints in the LSP Kubernetes lsst-demo /firefly
configurations at NCSA and in the cloud. It is expected that in the operations era these applications will be phased out in favor of endpoints in the LSST-
specific Portal deployment, but for the time we would like to preserve the capability to deploy "vanilla Firefly".

Firefly core release process

The IPAC build processes for Firefly typically produce both a .war file archive (which includes the Firefly server Java code and the JavaScript code to be
 and a Docker-format container image containing a Java runtime, Tomcat server, and the Firefly client and server code. LSST served at run time)

deployments and IPAC-internal development and test deployments are all based on the container images. (A previous "standalone deployment" build
option was to produce a .war file archive that also contained a version of Tomcat, in order to allow Firefly to be started with only a JRE pre-installed, but as
of mid-2019 this option is no longer being used and the equivalent functionality is offered by providing the Docker image.)

Projects needing additional features, search screen customizations, etc. generally combine Firefly with additional code in a project-specific repository in
order to produce deployment artifacts. The current Firefly design uses the build scripts from the package itself to build the project-specific firefly
artifacts. As a result, builds of these downstream artifacts require the build-time presence of the Firefly source code. (In other words, they are built just not
as a layer on top of the build artifacts of the core Firefly package.)

The IPAC release process for Firefly is being revised to better support the increasing number of projects outside IRSA that deploy Firefly-based
applications.

IPAC controls the development and release process through a Change Control Board on which LSST is represented. IPAC performs builds (using a highly
automated in-house Jenkins configuration) and generates Docker images, which are deployed on an in-house Kubernetes cluster for feature-branch and
release-candidate tests. Releases are made periodically, under CCB control, following in-house testing. They will be made available via Github, based on
tags of the form , as well as by releasing Docker-format container images corresponding to these releases, on Dockerhub, with release-2019.2.0
Dockerhub tags matching the release name string. These "vanilla" Firefly release images are available at on Dockerhub.ipac/firefly

LSST deployment configuration for "vanilla" Firefly core releases

As noted above, currently "vanilla Firefly" container builds such as this are used on the visualization server (as a bare Docker container), as lsst-demo
well as to serve endpoints in the LSP Kubernetes configurations at NCSA and in the cloud. (These usages are expected to be phased out by /firefly
the operations era.)

Until now, the policy has been that IPAC periodically updates the Dockerhub tag to indicate which build has been "blessed" ipac/firefly:lsst-dev
for deployment on LSST services. We will continue to do this until a new policy is agreed with LSST.

SUPERSEDED

This page is superseded by .DMTN-136

https://docs.google.com/document/d/15QSbahJKfq616JM0IrC6Xb7ywMJmlPggNk5iAP15ltY/edit#heading=h.utsrnzvuqwsv
https://tomcat.apache.org/
https://www.nginx.com/
http://httpd.apache.org
http://httpd.apache.org
https://github.com/Caltech-IPAC/firefly
https://irsa.ipac.caltech.edu/
https://hub.docker.com/r/ipac/firefly/tags
https://dmtn-136.lsst.io

What is required is a mechanism for determining, from the available set of release images, which will be used at any given time in release-yyyy.m.n
the various LSST deployments.

It is proposed that, for now, we from time to time update tags lsst-lsp-int and lsst-lsp-stable to signal which builds are recommended for LSST
deployment, with the former controlling which image is used on the lsst-lsp-int cluster, and the latter which image is used in all production and
otherwise widely-used contexts, including the bare-Docker lsst-demo deployment and the production-like LSP instances on lsst-lsp-stable and
the future Commissioning Cluster.

As an alternative, IPAC can create only the unchanging release-specific tags (as well as a tag we will maintain for casual outside users), and latest
leave LSST to maintain the mapping of releases to deployments internally. (This could be done in a data file or by cloning the images into LSST-
maintained image repositories.) We ask LSST to provide input on a preferred mechanism.

Portal Aspect (SUIT)
The LSST Portal Aspect is implemented as a Firefly application. As mentioned above, this involves combining Portal-specific code, primarily HTML and
Javascript, (in the LSST-Github package) with Firefly core code from and, as above, building a container image which contains a suit Caltech-IPAC/firefly
JRE, Tomcat server, compiled Java code, and ready-for-service JavaScript code. Roughly speaking, the resulting set of Web applications are a superset
of those from the Firefly core builds, with some LSST-specific relabeling, icon changes, etc. applied to the core applications.

Currently the Portal Aspect applications are run in LSP instances by deploying containers in Kubernetes based on the resulting container images.

SUIT release process (proposed)

Until now, IPAC has performed the builds of the container images, in Jenkins, and has released the containers at on Dockerhub, again suit ipac/suit
periodically updating the Dockerhub tag to indicate which version is "blessed" for deployment.lsst-dev

We are proposing to evolve the build process for the Portal Aspect (i.e., for the package) to follow more closely the software release mechanisms suit
being defined by Gabriele.

Releases of the package will be based on semantic-version tags, e.g., v1.0.2, instantiated in Github. Each release will include a version of a file that suit
names the Firefly release to be used in the recommended build of the package. (There is often some flexibility in cross-release compatibility, but for suit
LSST software release purposes we will identify a specific Firefly release that should be used in building the release artifacts associated with each pasuit
ckage release.)

IPAC will provide () a build script that LSST can use in an automated build infrastructure (e.g., - DM-20931 Getting issue details... STATUS

Jenkins or Travis) that, given a tag of the package, will produce a Docker-format container image that includes the code, Firefly code, the IPAC-suit suit
specified Tomcat server version, and a JRE (which will settle down on JRE 11).

LSST plans to release these images on a public Dockerhub account. The SQuaRE group will make a recommendation for the appropriate account and
container image name to be used for the Portal application, ideally in the context of a wider scheme for organizing all the LSST-created container images
needed for the deployment of the LSP. (Possible patterns: lsst-lsp/(aspect)-(component), e.g., lsst-lsp/portal-app; or lsst-lsp-(aspect)/(component), e.g.,
lsst-lsp-portal/app .) In the case of the Portal Aspect, the container images will be tagged on Dockerhub with the same version string used for the pacsuit
kage release name.

In addition to the public Dockerhub release, LSST may also run an internal Docker registry on which the same images are available.

As a bridge to this mechanism, IPAC will continue for a transition period to perform builds of the package, using the new build script, and release the suit
resulting images at on Dockerhub. ipac/suit

Again, for now, we will continue to use a revisable Dockerhub tag to indicate the "blessed" versions, until a new policy has been agreed with lsst-dev
LSST.

Portal Aspect online help

A similar mechanism will be used to generate container images for the Portal Aspect online help. The details are still being worked out.

Other IPAC-maintained packages

firefly_client (Python API for communication with a Firefly session)

firefly-api-access

jupyter_firefly_extensions

firefly_widgets

https://github.com/lsst/suit
https://github.com/Caltech-IPAC/firefly
https://hub.docker.com/r/ipac/suit/tags
https://github.com/lsst/suit
https://github.com/lsst/suit
https://github.com/lsst/suit
https://github.com/lsst/suit
https://jira.lsstcorp.org/browse/DM-20931
https://github.com/lsst/suit
https://github.com/lsst/suit
https://github.com/lsst/suit
https://github.com/lsst/suit
https://hub.docker.com/r/ipac/suit/tags

Other Firefly-related LSST-maintained packages

display_firefly (Firefly-specific back end for afw.display)

This package is maintained as a pure LSST Python package, using all the standard tooling as it applies to other LSST Stack packages. It is included in ls
 .st-distrib

	Proposed SUIT and related release processes

