
1DMLT F2F • Princeton • November 6-8 2018DMLTF2F • Princeton • November 6-8 2018

Release Process
Gabriele Comoretto

Configuration and Release Engineer

DMLT Face-to-Face
November 6-8 2018

2DMLT F2F • Princeton • November 6-8 2018

Presentation Summary

- Releases End Users

- Release Process in Use

- Assumptions

- Release Process To Be

- Pragmatic Approach

- Patch Releases

- Semantic Versioning

3DMLT F2F • Princeton • November 6-8 2018

Releases End Users
- It is all about what we need releases for...

- From DMTN-044:
• Regular LSST developer
• Close Collaborators
• External Users (science collaborators)

- Are these users really requiring Official Releases?
• Or are we talking about snapshots? Release Candidates? Weekly or daily releases?
• Maybe what is needed is a stable reference point for development activities
• This should be available in each commit on master, that has passed the CI system

4DMLT F2F • Princeton • November 6-8 2018

Releases End Users - 2

- What about DM Operations data processing?
• Prompt processing
• DRP processing
• Calibration Processing
• … other DM SW Products?

- We need to be able to provide software releases for operations:
• These release shall not contain
- Source code,
- Test data
- Build Tools

• we shall deploy only binaries

- We should be doing this during commissioning and OPS rehearsals...

5DMLT F2F • Princeton • November 6-8 2018

Releases End Users - 3

- So we have 2 different use cases:
• We need a release process that can provide the release of the required software

product (see Product Tree) for operational processing

• We still need to be able to provide a software distribution to the external
community, that distribution shall includes everything:
- Build tools and environment definition
- DM Software
- Test data
- Source code
- …

• If we can’t combine these use cases, we will need 2 different release
processes

6DMLT F2F • Princeton • November 6-8 2018

Release Process in Use

- Based on weekly releases automatically generated
• The first release candidate is based on the announced weekly (just a copy)

- Validation of the release candidate with unit test (and demo package)

- Additional release candidates created in case of problems / additional
changes
• until the final release candidate is identified

- Creation of the final release

- Naming schema: M.m
• No semantic versioning: in each release all packages SW will get the same version

7DMLT F2F • Princeton • November 6-8 2018

Release Process in Use - 2

- It is a simple approach

• But monolithic

- Slow: the build job takes several hours

• It includes everything, (3rd party packages, check packages like python, build
tools, test data, etc)

• DM SW is fragmented (more than 120 pkgs)

• It is complex

- In summary:

• It fulfills the requirement to provide a distribution to the external
users

8DMLT F2F • Princeton • November 6-8 2018

Assumptions

- The source of true is the SW repository

- A SW Product Release is identified by
• A Tag in the repository, that includes all source code, default configurations,

dependencies information

• A Release Note that includes all descriptive information
• Any packaging is just a technicality on top of the SW Release

- A SW Product has only one git repository (not true for DM)

9DMLT F2F • Princeton • November 6-8 2018

Release Process To Be

- Oriented to release only a SW Product defined in the product tree:
• For example DRP software product: will includes only the SW packages needed to

run the DRP
- Reason:

• we have to deploy in operations (NCSA, Base, Summit, others?) only the binaries that are
required to implement the operational services

• It assumes that Dependencies have been released already following the same
process

- To handle in a separate procedure:
• The environment management (conda?)
• The build tools (including sconsUtils)
• The packaging has to go on top of the release (eups? conda?)
• The distribution (docker?)

10DMLT F2F • Princeton • November 6-8 2018

Release Process To Be - 2
- Example 3rd party package Boost, release 1.68.0:

• Source code is available at:
- https://dl.bintray.com/boostorg/release/1.68.0/source/boost_1_16_0.tar.bz2

• It do not contains any dependencies, that are:
- Compiler (depends on the platform)
- icu
- bzip2
- xz
- zlib

• Using a conda recipe, for example:
- https://github.com/gcomoretto/boost-cpp-feedstock

• a distribution package can be created:
- https://anaconda.org/lsst-dm/boost-cpp

• that can be used to build DM science pipelines

- The Release is not depending from the Conda PKG

https://github.com/gcomoretto/boost-cpp-feedstock
https://anaconda.org/lsst-dm/boost-cpp

11DMLT F2F • Princeton • November 6-8 2018

Release Process To Be - 3

- Release steps on a single SW Product:
• Cut a branch
• Create a release candidate (on a release branch) in the SW repository
• Validate the release candidate
• Create new release candidates as needed and validate them
• Create the final release, a Tag in the repository, and document it with the Release Note.

- Distribution Packages (eups, conda) can be created on the release candidates,
on each commit and on the Official Release!

- This is not feasible now for DM:
• The actual build systems is requiring all the software to be build at once
• The number of SW packages is too high

- What can be done now ?

12DMLT F2F • Princeton • November 6-8 2018

Pragmatic Approach

Can be done now: moving all 3rd party
packages into conda environment as a first
step:
- DM-15495: successful build afw moving all

3rd party packages into conda environment
• 24 (3rd party) packages moved into conda
• Recipe created (or updated) for the ones

that was not available in conda
- Boost, minuit2, apr, apr-util

pytest-session2file, ndarray,
- Packages now available at:

https://anaconda.org/lsst-dm
• Remains 15 DM SW packages to build

using lsstsw - up to afw - on mac and
dev01 cluster

(thanks to Tim and Jim for the support provided)

https://anaconda.org/lsst-dm

13DMLT F2F • Princeton • November 6-8 2018

- Can be done now: manage the conda environment

- In the near future (6 -12 month?):
• Manage the build system
- Build tools: lsstsw (and others) not to be part of the released SW Product

• To be released separately (TBD)
- Conda packages required (they are defined in lsstsw)

• Need to reduce the complexity:
- Removing from the release process what is not part of the release
- Reducing the number of packages

• Merging packages → SW Product
• Using git-submodules → Meta Package → SW Product
• Can we (try to) control the creation of new git packages?

Pragmatic Approach - 2

14DMLT F2F • Princeton • November 6-8 2018

Pragmatic Approach - 3
- In the long term:

• Improve the build tools and dependency management

• Build the SW Products as identified in the product tree:
- Keep lsst_distrib for distribution to the science community (as it is now, in a first

moment)

• Release each SW Products separately
- Just Tags in github

• Provide separate distribution packages (eups / conda) for each SW Products
- conda install drp

• Create Docker images based on the new provided distribution packages

• Create a distribution for the scientific community that includes:
- All Science Pipelines SW products
- The build tools and the environment definition

15DMLT F2F • Princeton • November 6-8 2018

Summarizing

- The release is just a Tag (and release note)
• All information is contained in the SW repository

- The packaging and distribution are different processes:
• They go “on top” of the release
• Can be done on a snapshot (like a weekly), for each sha1, or for an

Official Release

- The development tools and environment need to follow their own
release process

- The release process should be applied to only one SW product at once

16DMLT F2F • Princeton • November 6-8 2018

Questions?

17DMLT F2F • Princeton • November 6-8 2018

- Patch releases are not done at the moment (at least not for release 15.0 and 16.0 of the
science pipelines).

- Can be done using release branches
• Back-porting ticket/branches → Development procedure to be defined
• Potentially there may be lots of conflicts
- I have back-ported DM-16235 (cherry-pick) on a release branch based on w.2018.42 (afw,

jointcal) in a test repository.

- What we need is:
• a controlled process, since back-porting and fixing conflicts may cost time
• a development procedure for back-porting (the developer is the driver here)
• a documentation procedure (use Jira Fix in Version Field, as proposed 6 months ago)

- During operations and commissioning we may need to do lots of patches
• Potentially one per day at the beginning
• We need a way to shortcut the process… but first we need to dominate the regular process.

Patch Releases

18DMLT F2F • Princeton • November 6-8 2018

Patch Releases - 2

- Patches on the actual release process:
• All the packages will be released with the patch version
- New tag in the repository and new eups packages

• This requires time, but it may be quicker than doing a new release from master

- Patches on the proposed release process:
• Only the impacted SW Products need to be released
• Semantic Versioning can be applied

- Do we always need an official patch release?
• In some cases a stable release branch can be used instead:
- Snapshots on the release branch or a patch release candidate

• This may be OK for:
- Validation / Integration / Commissioning
- Scientist that need a stable SW base to playing with

• An official patch release can always be done

19DMLT F2F • Princeton • November 6-8 2018

Semantic Versioning

- https://semver.org/spec/v2.0.0.html

- Three digits version identification: MAJOR.minor.patch
• new MAJOR: when incompatible API are introduced in the code

• new minor: when backward compatible functionalities are introduced in the code

• new patch: when backward compatible bug fixes are introduced in the code

- It may be really helpful for managing patch releases
• I think we need to sort out other things first (decisional procedure, development procedure

and documentation).

- But is it feasible?
• In some cases we may need to have breaking changes in minor releases or even in patches

(especially at the beginning of OPS and pre-OPS)

- This is optimistic: in 20 years of my experience, almost always a patch contained breaking changes (it is not me
to decide)

- We may need to relax the application of SemVer, and enforce it lather.

https://semver.org/spec/v2.0.0.html

20DMLT F2F • Princeton • November 6-8 2018

Questions?

21DMLT F2F • Princeton • November 6-8 2018

Other processes
- Development

• Management of the build tools
• This will require a release process on the build tools SW packages and conda environment

- Dependencies
• Add a requirements.txt in the existing SW packages

- 3rd party packages handle
• Use as much as possible available anaconda packages
• Fork existing conda recipes if available and need to be changed
• Create lsst conda recipes otherwise

- Packaging DM SW
• Use conda in parallel to EUPS (?)
• I would nice to just type: conta install lsst_distrib (?)

- Distributing DM SW
• To operations: docker
• To science community:

- lsst_distrib is not a SW product, it is a distribution that shall include all: SW Release, Build System, Test Data

