

DMTN-068: Lossy Compression Working Group

Goal

Determine whether some <u>additional</u> image products can be retained at a modest cost rather than requiring on-the-fly reconstitution from RAW.

Not meant to replace reprocessing where use-case demands the original image fidelity.

Methodology I

Prototype Lossy Compression implemented by separating Loss from Compression within *ci_hsc*

Loss: quantization applied to reduced single-epoch science and weight images recast as an integer representation (FITS with BSCALE)

Quantization (q): BSCALE = RMS / q

Compression:

evaluate lossless algorithms as these work well with integers

Methodology II

Single-epoch (equivalent to PVIs):

- Examine images to assess difference between quantized images and never-quantized versions
- Compare measurements (ForcedPhoto) made from neverquantized imaged and quantized single-epoch images

COADD: Construct COADDed patch from both never-quantized images and then from quantized images

Repeat image and measurement comparisons

Small set:

- 33 PVI CCDs
- COADD 1 patch @ 2-bands (typical depth ~5 images

Image Difference

Flux Measurements (from PVIs)

Centroid & Shape from PVIs

Algorithmic Benchmarks

TARLE	7.	Comp	ression	Factor	Achieved

	:.	-:	b-i-2	- la - i - 2	المستندي	1- 4	1				
q	gzip	pigz	bzip2	pbzip2	ibzip2	124	izop	zsta	zstań	XZ	XZ
4	6.73	6.73	9.96	9.95	9.96	3.69	3.11	6.29	6.29	10.06	8.19
8	5.54	5.53	8.20	8.20	8.21	3.34	2.96	5.42	5.42	8.20	6.79
16	4.69	4.69	5.41	7.01	7.03	3.11	2.82	4.82	4.82	6.96	6.01
32	4.04	4.03	6.14	6.14	6.14	2.93	2.66	4.35	4.35	6.00	5.44
64	3.62	3.62	5.47	5.47	5.48	2.82	2.47	3.94	3.94	5.29	4.95
128	3.38	3.37	4.88	4.88	4.88	2.66	2.32	3.56	3.57	4.75	2.51
vanilla	1.71	1.71	1.80	1.80	1.80	1.50	1.49	1.72	1.72	1.87	1.80

TABLE 8: Time to Compress per File

q	gzip	pigz	bzip2	pbzip2	lbzip2	lz4	Izop	zstd	zstd*	XZ	XZ'
4	4.45	1.18	5.00	1.42	0.85	0.21	0.24	0.36	0.12	55.27	3.33
8	6.06	1.64	4.91	1.39	0.82	0.21	0.24	0.42	0.15	50.94	4.12
16	8.27	2.24	4.33	1.39	0.82	0.27	0.27	0.55	0.18	50.09	4.27
32	10.30	2.76	5.27	1.42	0.79	0.24	0.27	0.58	0.21	47.36	4.64
64	11.79	3.00	5.39	1.52	0.88	0.24	0.30	0.61	0.24	47.48	5.09
128	12.76	3.21	5.91	1.61	0.94	0.27	0.30	0.67	0.21	54.21	2.52
vanilla	3.36	0.97	8.94	2.79	1.58	0.15	0.12	0.30	0.15	34.00	15.15

TABLE 9: Time to Decompress per File

	TABLE 9. Time to Decompress per File										
q	gzip	pigz	bzip2	pbzip2	lbzip2	lz4	Izop	zstd	zstd*	XZ	XZ'
4	0.21	0.24	2.30	1.21	1.27	0.15	0.18	0.27	0.24	0.82	1.06
8	0.24	0.27	2.33	1.12	1.24	0.18	0.18	0.27	0.27	0.97	1.27
16	0.27	0.27	2.02	1.12	1.21	0.18	0.18	0.27	0.24	1.09	1.33
32	0.30	0.30	2.42	1.24	1.24	0.15	0.18	0.27	0.24	1.27	1.42
64	0.30	0.30	2.42	1.27	1.09	0.18	0.21	0.27	0.27	1.42	1.48
128	0.30	0.33	2.82	1.30	1.24	0.24	0.21	0.30	0.27	1.52	0.67
vanilla	0.39	0.36	4.36	1.48	1.27	0.15	0.12	0.24	0.24	3.58	3.52

Conclusions/Recommendations /

Single-epoch (equivalent to PVIs) q=16-32

- Less than 1/10 sigma in flux for S/N>5
- Less than 1/10 pixel centroid and shape S/N>10

COADD: not yet a realistic assessment compared to LSST Survey w/ 100-1000 image depth.

Do not recommend that LSST DRP catalogs reflect measurments made from quantized/compressed images.

Can achieve compression factor of 5-7 using BZIP or possibly XZ. If speed becomes important each of these have multi-threaded variants.

Extras

TABLE 3: Maximum Flux Difference (in units of $\sigma_{\rm E}$) for 90% of Objects

				•		r ₀ ,				
		PS	F Flux		Aperture Flux					
q	S/N=3	S/N=5	S/N=10	S/N=100	S/N=3	S/N=5	S/N=10	S/N=100		
4	0.266	0.234	0.208	0.171	0.332	0.269	0.208	0.171		
8	0.161	0.136	0.110	0.087	0.220	0.170	0.113	0.089		
16	0.106	0.078	0.056	0.044	0.163	0.113	0.058	0.044		
32	0.074	0.050	0.031	0.022	0.117	0.068	0.033	0.022		
64	0.067	0.043	0.018	0.011	0.097	0.064	0.019	0.011		
128	0.049	0.027	0.011	0.006	0.067	0.042	0.014	0.006		

TABLE 4: Maximum Centroid and Shape Difference for 90% of Objects

		Ce	ntroid	<u>'</u>	Shape				
q	S/N=3	S/N=5	S/N=10	S/N=100	S/N=3	S/N=5	S/N=10	S/N=100	
4	1.791	0.898	0.269	0.013	0.370	0.231	0.112	0.010	
8	1.364	0.590	0.129	0.007	0.183	0.118	0.058	0.005	
16	1.063	0.375	0.066	0.003	0.255	0.083	0.030	0.002	
32	0.778	0.276	0.039	0.002	0.136	0.039	0.016	0.001	
64	0.704	0.258	0.036	0.001	0.080	0.030	0.009	0.001	
128	0.540	0.169	0.029	< 0.001	0.066	0.029	0.006	<0.001	

Table 5: Maximum Flux Difference (in units of $\sigma_{\mathrm{F_0}}$) for 90% of COADD Objects

					-0				
		PS	F Flux		Aperture Flux				
q	S/N=3	S/N=5	S/N=10	S/N=100	S/N=3	S/N=5	S/N=10	S/N=100	
4	0.399	0.296	0.264	0.225	0.443	0.392	0.291	0.208	
8	0.296	0.193	0.181	0.152	0.281	0.255	0.184	0.140	
16	0.234	0.142	0.128	0.107	0.237	0.186	0.120	0.089	
32	0.182	0.114	0.107	0.086	0.174	0.147	0.103	0.077	
64	0.193	0.107	0.102	0.083	0.156	0.126	0.096	0.071	
128	0.114	0.034	0.019	0.024	0.080	0.067	0.030	0.010	

TABLE 6: Maximum Centroid and Shape Difference for 90% of COADD Objects

				•	Cl					
		Ce	entroid		Shape					
q	S/N=3	S/N=5	S/N=10	S/N=100	S/N=3	S/N=5	S/N=10	S/N=100		
4	1.857	1.077	0.414	0.020	0.155	0.181	0.120	0.008		
8	1.185	0.677	0.281	0.015	0.144	0.113	0.098	0.006		
16	1.094	0.506	0.191	0.011	0.116	0.071	0.056	0.004		
32	0.856	0.353	0.142	0.009	0.075	0.057	0.049	0.003		
64	0.827	0.284	0.114	0.008	0.070	0.053	0.045	0.004		
128	0.652	0.156	0.073	0.006	0.029	0.010	0.005	>0.001		