LARGE SYNOPTIC SURVEY TELESCOPE

Large Synoptic Survey Telescope (LSST)

LSST DM Software Release
Considerations

John Swinbank
DMTN-044

Latest Revision: 2017-04-24

Abstract

This attempts to summarise the debate around, and suggest a path forward, for
LSST software releases. Although some recommendations are made in §E, they are
intended to serve as the basis of discussion, rather than as a complete solution.

This material is based on discussions with several team members over a consider-
able period. Errors are to be expected; apologies are extended; corrections are wel-

come.

[S557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Software Releases DMTN-044 Latest Revision 2017-04-24

Contents
1 Consumers of Releases 1
2 Developer Workflow 1
R.1 Requirements & ISSUET . . . o o v v v e e e e e e e e e e 1
R.2 Possible Approaches 3
B Close Collaborators 4
B.1 Requirements & ISSUEY . .« . . v v v v v e e e e e e e 4
B.2 Possible Approaches 5
4 External Users 5
M1 Requirements & ISSUET . . o o v v v v e e e e e e e e e e e 5
U2 Possible Approaches 6
5 Technical and Resource Implications 7
5.1 Release Managen o v v v 7
5.2 Code REStrUCtUNING . . o o o v v e e e e e e e e e e e e e e e e e 8
5.3 Developer TOol Upgrades oo v v v et 8
5.4 Binary Release Procedureso v 9
6 Recommendations 9
6.1 DeVeIOPEIS . o o o o e e e e 9
6.2 Close Collaborators v v v v e 10

[S557

— | ARGE SYNOPTIC SURVEY TELESCOPE

DM Software Releases DMTN-044 Latest Revision 2017-04-24

6.3 LoNg TermM SUPPOM « « o v o o e e e e e e e e e e e .10

[S557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Software Releases DMTN-044 Latest Revision 2017-04-24

LSST DM Software Release Considerations

1 Consumers of Releases

Our usual discussion over releases conflates (at least) three different classes of consumers,
which | summarize below.

1. Regular LSST developers (discussed in §E);

2. Close collaborators, who are not intimately familiar with the codebase, but require ac-
cess to new features and bugfixes with minimal latency (§E);

3. External users, where the term “external” is used loosely to include science collabora-
tions or the Commissioning Team, who require codebase which they can use for carrying
out medium- to long-term projects without handling regular APl changes (§@).

Particularly as regards the first class of users — LSST Developers — the question of releases
is intimately linked with concerns over development workflow.

2 Developer Workflow

2.1 Requirements & Issues

Our regular developer workflow is well described in the Developer Guidell Fundamentally,
developers perform their work on ticket branches (tickets/DM-NNNN) which are reviewed and
rebased onto master before merging.

Note that in this model, the tip of the ticket branch immediately before merging should be
identical to the state of master immediately after the merge. This means that the developer
can demonstrate (e.g. using the Cl system) that merging their changes will not cause master
to break or regressE.

"https://developer.1sst.io/processes/workflow.html
ZMerging without rebasing does not have this property: the post-merge state of master will neither be the same
as its pre-merge state nor the state of the ticket branch.

https://developer.lsst.io/processes/workflow.html

[S557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Software Releases DMTN-044 Latest Revision 2017-04-24

It is worth emphasizing that this development model means that code which hits master is
generally well behaved: we do not frequently have problems with it failing to build or with
bugs which render the codebase fundamentally useless,

Key issues include:

+ Turnaround time on reviews, in particular of complex work, can be long. This can cause
substantial time to pass before the work on the ticket branch being completed and the
merge to master. This means:

- Other work dependent on the new feature backs up onto a series of ticket branches,
all based upon each other. Keeping track of which branches require which other
branches becomes awkward.

- Since releases are made from master, the new functionality is not available in any
released version of the codebase.

+ master continually changes as other developers are merging their work. This means:

- Rebasing can take substantial effort.

- Rebasing a long-running branch against a substantially changed master at the end
of a long development project can be a major task. To minimise the effort, de-
velopers generally frequently rebase against the latest master. After rebasing, it's
frequently necessary to rebuild all or much of the stack which (as below) can be a
length process.

* Nominally “high-level” work, which superficially seems to affect only Python code in pack-
ages on the leaves of the tree, often also requires changes to lower-level packages (usu-
ally, but not always, afw). This means:

- Rebuilding after rebasing is often a length process: it takes of order one hour to
rebuild from a low-level package.

* Our build process is fragile: although (as above) it is rare (but not unknown) for the code-
base to be unbuildable, it makes numerous assumptions about the system on which it
is building, and relies on complex (and often poorly-understood by most developers)
bespoke tooling (Isstsw, EUPS, ...). This means:

30f course, sometimes regressions do slip in.

[S557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Software Releases DMTN-044 Latest Revision 2017-04-24

- Even after successfully rebasing, developers often waste time debugging local build
problems before they can resume work.

2.2 Possible Approaches

+ Enforce API/ABI stability by preventing modifications to low-level packages. This means:

Packages obviously cannot be frozen indefinitely, but rather we would accept changes
only during certain windows.

A release manager (§) may be required to coordinate this process.

Work which requires changes to low-level packages could only be merged during
dedicated windows, and would otherwise back-up.

Any other work which happened to coincide with a window would encounter sub-
stantial disruption as, likely, a large number of interfaces would change at once.

* Require developers to develop against stable (e.g. weekly) releases, rather than latest
master. This means:

- Developers have a stable ABI and API to target.

- The“shared stack” available on LSST-provided developer hardware (1sst-devo1, the
Verification Cluster) should always provide the latest weekly, so developers can de-
velop against that with no stack maintenance required on their part.

- Work must still be merged to master (or some other common development branch)
eventually. This means one of two things:
1. Work is merged without rebasing. The merge is complex. The post-merge state
of the stack is not testable until after the merge has taken place.

2. Work is rebased from the weekly to master before merging. The rebase is poten-
tially complex (since it involves doing in one step a rebase which might other-
wise have been undertaken incrementally). The advantages vis-a-vis the current
workflow are unclear.

* Provide regularly updated binary releases of current master (§). This means:

- Following a rebase, developers should not need to recompile any packages other
than those on which they are directly working.

[S557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Software Releases DMTN-044 Latest Revision 2017-04-24

- Shared stacks on common developer hardware can be automatically updated with
the latest release.

- Generating and installing binary releases takes time, so there is still a potential
speed-bump to developer workflow.

- Itis likely impossible to provide binaries targeting all possible platforms which de-
velopers may reasonably wish to use.

* Restructure stack code to better orthogonalize between packages (§@). This means:

- Changes to high-level packages are less likely to require changes to low-level pack-
ages.

- Huge low-level packages (afw) could be split into smaller components, so that a
change would be less disruptive.

- This might help, but is not in itself a complete solution: some high level changes
will always require changes in low level packages.

* Provide better development tools, replacing or augmenting tools like Isstsw to make our
build process more reliable, less prone to user error, and (where possible) faster (85.3).
This means:

- Developers who need to recompile after rebasing should find the task easier, faster
and less disruptive.

- It'sunclear how much benefit could really be gained here: Isstsw is clunky and could
certainly be streamlined, but it's not a disaster.

3 Close Collaborators

3.1 Requirements & Issues

Itis important to be able to rapidly provide collaborators, e.g. members of the Camera Team,
with versions of the stack which may resolve particular issues or provide new features with
minimal latency. However, these individuals are unfamiliar with the stack and our particular
toolchain than regular developers. They are frustrated by awkward software and failed builds.

Collaborators may be already using a particular weekly (or other) release, and not be in a
position to deal with API or other instability. Therefore, simply upgrading to a newer weekly

[S557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Software Releases DMTN-044 Latest Revision 2017-04-24

may not always be convenient. Further, for the reasons discussed in §, it may not be practical
for the work to “simply” be merged to master and hence appear in an upcoming weekly.

However, it is accepted that access to the latest features will, at some level, require tracking
new development. It is not practical to commit to provide arbitrary releases with an arbitrary
set of bug fixes and new features upon request.

3.2 Possible Approaches

* Provide better development tools (§@). It seems unlikely that this would be able to
provide a sufficiently seamless process, though.

* Provide easy-to-install binary distributions corresponding to particular branches (§@).
This means:

- End users could use our standard binary workflow to install a binary release which
contains the specific features pulled onto a branch by their LSST contact.

- The project would make no ongoing effort to support these binary releases.

- When LSST developers may develop work on feature branches and provide it to
collaborators using this method, the motivation to go through the effort of merging
the work to master may be reduced. There is, therefore, a danger of producing a
series of “stale” ticket branches which contain important functionality but which
have never been merged. Avoiding this would require real discipline.

4 External Users

4.1 Requirements & Issues

External users, for a generous definition of “external”, require a release which provides some
level of functionality and is “supported” in the long term — that is, errors discovered are fixed,
and there is no expectation that they need to upgrade to a newer version to use functionality
advertised as being part of the release.

It is not clear to what extent external users may require that new features (as opposed to bug
fixes) be added to these long-term supported releases.

[S557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Software Releases DMTN-044 Latest Revision 2017-04-24

The definition of “long-term” is vague, but we might reasonably assume the value of six months
based on current practice. Of course, the longer support is required, the further the current
development version will diverge from the supported codebase, and the harder it will be to
make fixes which apply to both of them.

However, our current practice centres on date-based releases. In future, itis likely that feature-
driven releases will predominate as we are required to deliver and support a particular set of
functionality as required by e.g. the Commissioning Team.

It may be necessary to maintain two (or more?) release “trains” in parallel, in addition to
ongoing development on master: for example, to support different audiences or to provide a
semi-stable branchf. No concrete requirements have been expressed here.

4.2 Possible Approaches

* Release procedure:

- Releases can be made by directly selecting (and subjecting to a battery of tests) a
particular version of the master branch, without requiring any special action from
most developers. This is how releases have been handled to date. As per §@, we
have been relatively successful in maintaining developer discipline and strict prac-
tices, so that master is generally in a “releasable” state. This approach enables de-
velopers to continue with their work normally while the release happens in parallel.

- Releases could be based around a freeze of development on master to ensure that
a well-tested and working version of the codebase is released. The details of im-
plementing such a freeze, how developers might continue working while master is
frozen, the branch policy, etc, are regarded as out of scope for this documentt,

*+ Back-porting fixes:

- While minor technical fixes will often be straightforward to back-port to stable re-
leases, deciding which changes to science logic constitute “bugs” that require port-
ing will require careful thought.

“e.g. FreeBSD's “STABLE” vs “RELEASE”.
SAlthough it is not current practice, historically a next branch has been used to enable ongoing development
while master is frozen.

[S557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Software Releases DMTN-044 Latest Revision 2017-04-24

- This process might reasonably be coordinated by a dedicated Release manager
(§), working in conjunction with the DMCCB.

- Porting substantial changes may become extremely complex as not just the logic
but the underlying infrastructure may be quite different. The level of effort required
is likely large.

- Fixes, even those which are known to be required by an older release, should al-
ways be developed targeting master and then back-ported (unless the code being

fixed has already been removed from master). No new work may be performed on
release branches.

5 Technical and Resource Implications

5.1 Release Manager

Some of the approaches outlined above require the services of a Release Manager. Such an
individual might be required to:

+ Carry out work relating to the mechanics of making releases (e.g. applying appropriate
tags, ensuring that releases contain the requisite features, etc);

Collate and compile release notes and other supporting material for stable releases;

Work with the community and the DMCCB to understand which issues need to be back-
ported to stable releases;

* Make fixes as required, including back-porting where necessary.

Some of this work is currently being carried out by SQuaRE. Other parts of it, in particular back-
porting of bug fixes, may require development expertise that is currently only found within
other teams (e.g. Pipelines likely best understand how to backport Pipelines code, ditto for
DAX, etc). Two possible approaches have been suggested here:

+ Centralising all of this expertise in one named individual would streamline the process
and enable easier resource loading for the development teams.

[S557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Software Releases DMTN-044 Latest Revision 2017-04-24

+ Having the release manager role be simply a managerial one (which may rotate between
project members) who can call on support from the development teams may reduce
the concentration of skill required in one individual, at the expense of a more complex
management and resourcing structure.

5.2 Code Restructuring

Asignificant overhaul of the structure of the codebase has been suggested on several previous
occasions. See, for example, DM-2003 or various discussions on ConfluenceB. These have
generally foundered due to the large amount of work required, the desire to address more
immediately pressing concerns, and uncertainty over long term priorities.

Broadly speaking, those concerns still apply. There is no effort currently available within the
Science Pipelines groups to spearhead a restructuring effort, although some developer time
could be devoted to supporting work organized by another team (e.g. Architecture, SQuaRE).

5.3 Developer Tool Upgrades

Action here might range from a relatively modest overhaul of the Isstsw script to make it more
user friendly to a root-and-branch reconsideration of the way our software is packaged, the
build tools and utilities, and the distribution system.

The effort required would obviously vary substantially depending on how ambitious this project
was. It seems unlikely that a significant overhaul would be worth the effort insofar as it nar-

rowly affects pipeline developers, but there might also be knock-on benefits for other con-

sumers of the software (who would find it easier to install and better integrated with their

typical environment, e.g. pip, conda, etc.).

There is no effort currently available within the Science Pipelines groups to spearhead a re-
structuring effort, although some developer time could be devoted to supporting work orga-
nized by another team (e.g. Architecture, SQuaRE).

https://confluence. lsstcorp.org/display/DM/Winter2015+Package+Reorganization+Planning
“https://confluence. lsstcorp.org/display/DM/Summer2015+Package+Reorganization+Planning

https://jira.lsstcorp.org/browse/DM-2003
https://confluence.lsstcorp.org/display/DM/Winter2015+Package+Reorganization+Planning
https://confluence.lsstcorp.org/display/DM/Summer2015+Package+Reorganization+Planning

[S557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Software Releases DMTN-044 Latest Revision 2017-04-24

5.4 Binary Release Procedures

The SQuaRE team is developing a system which makes it possible to produce binary releases
from Jenkins runs. Specifically:

+ They directly anticipate being able to generate a binary release from ticket branches
upon request.

* They are open to the possibility of generating binaries from all builds of master (or, pre-
sumably, based on some more sophisticated selection algorithm).

Note that a binary release currently consumes around 5 GB of storage. Long-term archiving
of binaries corresponding to every build of master is likely impractical given the storage con-
siderations.

It would take some effort for SQuaRE to develop a system capable of generating binaries for all
master builds, including time devoted to developing sensible resource management systems,
etc. However, this is likely possible upon request.

Note that the established variety of platforms upon which team members and their collabo-

rators are working, together with issues such as C++ ABI compatibilityE mean that it is likely
impossible to guarantee to provide binaries compatible with every system.

6 Recommendations
Given the above considerations, the following course of action sounds plausible:

6.1 Developers
* Provide regularly updated binary releases of currentmaster, automatically installing them
onto shared developer architecture.

* Encourage developers to develop against weekly releases wherever possible, making
use of binaries to help with rebasing.

8e.g. https://wiki.gentoo.org/wiki/Upgrading_GCC#The_special_case_C.2B.2B11_.28and_C.2B.2B14.2S

https://wiki.gentoo.org/wiki/Upgrading_GCC#The_special_case_C.2B.2B11_.28and_C.2B.2B14.29

[S557

LARGE SYNOPTIC SURVEY TELESCOPE

6.2

6.3

DM Software Releases DMTN-044 Latest Revision 2017-04-24

Schedule minor package reorganization and development tool improvement work when
possible and when they align with other goals, but do not anticipate a major overhaul in
this area.

Close Collaborators

Make use of the ability to generate binary releases from ticket branches to provide col-
laborators with access to new features and bug fixes with low latency and minimal effort
on their part.

Rely on disciplined management to ensure that those features & fixes are also merged
to master in a timely fashion.

Long Term Support
Appoint a Release Manager to coordinate long-term supported releases in conjunction
with the DMCCB. This individual would (presumably) be part of the SQuaRE team.

Make releases by tagging master, then having the Release Manager maintain the branch
by back-porting essential fixes.

Where necessary, multiple stable branches may be maintained. Developers will con-
tinue working on master with the RM and DMCCB back-porting work.

Consider switching from a time-based to a feature-based release schedule.

10

	Consumers of Releases
	Developer Workflow
	Requirements & Issues
	Possible Approaches

	Close Collaborators
	Requirements & Issues
	Possible Approaches

	External Users
	Requirements & Issues
	Possible Approaches

	Technical and Resource Implications
	Release Manager
	Code Restructuring
	Developer Tool Upgrades
	Binary Release Procedures

	Recommendations
	Developers
	Close Collaborators
	Long Term Support

