
SuperTask WG	report
G.	Dubois-Felsmann,	J.	Bosch,	M.	Gower,	N.	Pease,	A.	Salnikov,	J.	Sick



06	- 08	March	2017 2LSST	Joint	Technical	Meeting	2017

Purpose	of	the	working	group
• Resolve	long-standing	design	questions	regarding	the	packaging	of	
Science	Pipelines*	code	for	execution	and	the	interfaces	for	provision	
of	data
• The	key	use	case	is	the	definition	and	execution	of	production	pipelines
• Pipeline	scientific	logic	is	defined	in	terms	of	instances	of	(I/O-free)	Task	
subclasses,	with	configuration;	how	is	this	handed	off	for	production?

• A	layer	above	Task	has	to	do	the	I/O	(currently	in	subclasses	of	CmdLineTask)
• We	would	like	to	have	an	agreed-upon	way	for	steps	in	pipelines	to	express	
their	I/O	grouping	and	parallelization	constraints	to	a	workflow	system

*	and	other	applications,	e.g.,	data	quality	monitoring



06	- 08	March	2017 3LSST	Joint	Technical	Meeting	2017

Working	group	mechanics
• The	central	principle	is	to	get	authoritative	input	from	stakeholders	
and	developers
• Jim	Bosch Science	Pipelines
• Michelle	Gower Workflow	/	NCSA
• Jonathan	Sick SQuaRE
• Andy	Salnikov Lead	developer
• Nate	Pease Butler	lead	developer
• Gregory	Dubois-Felsmann Architecture	(chair)

• Original	plan	was	to	wrap	up	by	April	12	with	recommendations
• WG	members	were	told	to	plan	for	an	0.2	FTE	level	of	effort



06	- 08	March	2017 4LSST	Joint	Technical	Meeting	2017

Activity	to	date
• We	met	for	4	hours	/	week	in	March	and	April

• WG	members	also	spent	considerable	offline	time

• Compared	to	the	plan:
• Took	longer	to	go	through	all	the	requirement-defining	inputs,	mainly:

• Understanding	the	data-grouping	and	parallelization	structures	needed	by	the	pipelines
• Understanding	the	production-control	issues	articulated	by	NCSA

• Discovered	that	“DataId-mapping”	(vide	infra)	was	the	crux	of	the	design

• There	are	still	some	unresolved	issues,	but	we	are	ready	to	report	and	
to	get	feedback	from	the	larger	group



06	- 08	March	2017 5LSST	Joint	Technical	Meeting	2017

Summary	of	the	idea
A	Pythonic API	for	defining	a	sequence	of	processing	steps,
• each	built	from	Tasks,	with	a	pex_config-based	configuration,
• exposing	their	data-grouping	requirements	and	associated	changes	of	
parallelization,
• relying	on	the	referencing	of	inputs	and	outputs	in	terms	of	an	evolution	of	
the	DataId concept,
• and	on	I/O	through	a	Butler
and	a	generic	mechanism	for:	invoking	any	such	sequence	of	processing	
• on	a	defined	set	of	input	and/or	output	DataIds,
• computing	a	DAG	for	the	processing	steps,
• as	well	as	a	complete	manifest	of	input	and	output	(DataId,	type)	pairs	for	
each	execution	of	each	processing	step,
• and	executing	it	in	a	variety	of	processing	environments.



06	- 08	March	2017 6LSST	Joint	Technical	Meeting	2017

An	indicative	reference	case	for	contrast
• A	more	explicitly	command- and	file-based	approach
• Processing	steps	as	Unix	commands

• Implemented	as	a	refactored	evolution	of	CmdLineTask

• Explicitly	file-based	input	and	output	specifications
• Data	dependencies	expressed	externally	to	the	processing	steps,	
perhaps	in	a	Common	Workflow	Language-like	manner
• Substantial	intelligence	moved	to	a	scripting	layer	above	the	step-
commands



06	- 08	March	2017 7LSST	Joint	Technical	Meeting	2017

Key	constraining	requirements
• Pythonic API
• Support	of	development	and	production	through	a	common	interface
• Ability	to	predict	all	inputs	and	outputs	to	support	data	staging	and	
creation	of	“walled	gardens”	for	production	jobs
• Butler	I/O
• Flexible	parallelization	changes
• Parallelization	specifications	represented	by	code	in	each	processing	
step	(i.e.,	the	grouping	constraints	of	co-addition	go	along	with	a	co-
addition	SuperTask)



06	- 08	March	2017 8LSST	Joint	Technical	Meeting	2017

A	more	detailed	requirements-oriented	view
• Provide	interface	for	delivering	a	complete	algorithmic	work	
specification	(a	“Pipeline”)	from	Science	Pipelines	to	an	execution	
system,	notably	the	production	system.		
• A	Pipeline	specification	fully	represents	the	transformations	to	be	performed,	
but	does	not	represent	the	specific	data	to	which	the	transformation	is	to	be	
applied.



06	- 08	March	2017 9LSST	Joint	Technical	Meeting	2017

Pipeline	specifications
• A	Pipeline	specification	must:

• Specify	the	units	of	code	to	be	run	and	a	sequence	in	which	they	are	to	be	
run.
• The	sequence	specification	need	only	be	a	explicit	ordered	list.		It	is	not	required	to	
support	looping,	branching,	or	step-skipping.

• Specify	the	configurations	of	all	the	units	of	code	to	be	run,	using	the	existing	
LSST	stack	“pex_config”	mechanism.

• Specify	how	datasets	must	be	grouped	for	each	step	in	the	sequence.		(E.g.,	
for	the	inputs	to	coaddition.)

• Permit	each	step	in	a	sequence	to	have	a	different	required	data	grouping,	
and	therefore	an	implied	change	of	permissible	parallelization.

• Support	the	organization	of	work	in	terms	of	Tasks,	assumed	to	obey	the	“no-
I/O	rule”,	i.e.,	operating	solely	on	Python-domain	objects,	and	supply	the	
configurations	they	require.



06	- 08	March	2017 10LSST	Joint	Technical	Meeting	2017

Pipeline	specifications	(2)
• Permit	a	common	supervisory	framework	to	execute	any	Pipeline,	based	
solely	on	information	obtained	programmatically	from	the	Pipeline	
specification.

• Provide	APIs	that	support	“pre-flight”	and	“run”	phases	of	execution	
organized	by	the	supervisory	framework.		These	are	further	constrained	in	the	
next	section;	the	basic	definition	is:
• Pre-flight:	support	the	computation	of	a	DAG	for	the	application	of	a	Pipeline	to	a	
specification	of	inputs	and/or	outputs	as	DataIds.		

• Run:	invoke	the	units	of	work	defined	in	the	DAG	(pairings	of	a	processing	step	with	its	
input	and/or	output	DataIds)

• Provide	APIs	that	support	resolution	of	full	DataId specifications	for	“implied	
inputs”	such	as	calibration	frames.



06	- 08	March	2017 11LSST	Joint	Technical	Meeting	2017

Pipeline	specifications	(3)
• Be	able	to	use	a	Butler	instance	(provided	by	the	supervisory	framework)	to	
perform	all	required	I/O	for	each	step	in	the	“run”	phase.

• Use	the	configuration	mechanism	to	control	the	Butler	dataset	types	used	by	
each	processing	step
• Some	exceptional	cases	requiring	direct	I/O	to	databases	may	be	excluded	from	this	
restriction.	(E.g.,	to	permit	database	ingest	itself	to	be	handled	in	this	framework.)



06	- 08	March	2017 12LSST	Joint	Technical	Meeting	2017

Pipeline	specifications	(4)
• Support	pre-execution	programmatic	insertions	to	an	already-specified	
Pipeline’s	processing	sequence,	with	the	intent	that	this	interface	could	be	
used	by	a	supervisory	framework	to	add,	e.g.,	quality	analysis	or	other	
monitoring	steps.
• These	must	be	capable	of	being	captured	for	purposes	of	provenance	recording.

• Support	pre-execution	programmatic	overrides	to	the	configurations	specified	
for	a	Pipeline.
• These	must	be	capable	of	being	captured	for	purposes	of	provenance	recording.
• We	assume	that	it	will	continue	to	be	possible	to	capture	the	full	run-time	configuration	
as	a	snapshot.



06	- 08	March	2017 13LSST	Joint	Technical	Meeting	2017

Supervisory	framework
• The	supervisory	framework	must:

• Be	designed	to	support	the	creation	of	multiple	specializations	of	the	
supervisory	framework	for	different	execution	environments.
• It	must	support	specializations	suitable	for	at	least	the	following	execution	
environments:
• Level	2	(DRP),	CPP,	and	other	non-real-time	production
• Level	1	near-real-time	production
• Interactive,	command-line	execution
• Execution	from	a	Python	prompt	(e.g.,	in	a	notebook)
• Execution	in	a	persistent	server	(e.g.,	to	support	the	SUIT	Portal)
• Automated	CI	and	verification	testing



06	- 08	March	2017 14LSST	Joint	Technical	Meeting	2017

Supervisory	framework	(2)
• Provide	a	common	implementation	of	the	logic	required	for	interpretation	of	
the	Pipeline	steps	and	their	parallelization	changes.
• The	basic	logic	would	be	applied	uniformly	in	all	specializations.

• Support	“pre-flight”	of	execution	of	a	Pipeline	on	a	specified	set	of	inputs	
and/or	desired	outputs,	resulting	in	a	DAG	for	the	processing,	with	the	nodes	
in	the	DAG	being	the	units	of	work	to	be	executed,	each	one	being:
the	combination	of	one	of	the	processing	steps	in	the	Pipeline	with	a	
complete	list	of	the	inputs	and	outputs	for	each	job	(specified	as	pairs	of	fully	
specified	DataIds and	Butler	dataset	types).
• Note	that	a	specific	supervisory	framework	specalization is	free	to	consolidate	these	
units	of	work	“vertically”	(along	the	processing	flow)	and/or	“horizontally”,	for	efficiency.

• Provide	a	serialization	form	for	the	results	of	pre-flight,	so	that	they	can	be	
computed	in	one	place	and	executed	in	another



06	- 08	March	2017 15LSST	Joint	Technical	Meeting	2017

Supervisory	framework	(3)
• Create	and	supply	the	Butler	required	to	support	the	I/O	that	will	be	
performed	in	the	“run”	phase,	for	each	unit	of	work.
• Provide	for	“non-intrusive	provenance”	discovery	(desirable)

• Tracking	the	actual	execution	of	units	of	processing	on	input	datasets,	their	
outputs,	and	their	associated	Task	structure	and	configuration

• Done	via	instrumentation	of	Butler	calls
• Recording	mechanism	is	TBD

• Among	other	housekeeping	functions:
• Set	up	logging	for	the	execution	of	each	processing	step.
• Set	up	any	provenance-recording	mechanism(s)	for	the	execution	of	each	
processing	step,	either	or	both	of:
• The	above	coarse-grained	non-intrusive	provenance
• Any	“fine-grained”	(i.e,	intrusive)	provenance	recording	(c.f.	provenance_proto)



06	- 08	March	2017 16LSST	Joint	Technical	Meeting	2017

Supervisory	framework	(4)
And,	the	central	issue,	as	it	turned	out:

• Accept	Pipeline	“campaign”	specifications	including:
• Specifications	of	outputs	to	be	produced	from	a	universe	of	available	inputs,	with	the	
Pipeline	processing	the	minimal	set	of	inputs	required	to	make	the	outputs

• (Possibly)	Specifications	of	inputs	to	be	processed,	with	the	Pipeline	producing	all	
possible	outputs	deriving	from	these	inputs

• Specifications	of	both	inputs	and	outputs,	with	the	inputs	specifications	treated	as	
restrictions	on	the	universe	of	available	inputs;	i.e.,	“intersection”	logic	is	applied

(This	is	an	area	we	are	still	actively	thinking	about	as	we	write	up.)



06	- 08	March	2017 17LSST	Joint	Technical	Meeting	2017

Requirements	from	SQuaRE,	SUIT
• The	principal	contributions	to	the	requirements	that	were	strongly	
driven	by	SQuaRE and/or	SUIT:
• The	ability	to	insert	additional	steps	into	an	already-defined	Pipeline	(e.g.,	for	
data	quality	monitoring).

• The	ability	for	the	supervisory	framework	to	be	built	into	a	persistent	server.
• Strong	support	for	the	interface	being	Pythonic.



Quick	design	tour

06	- 08	March	2017 LSST	Joint	Technical	Meeting	2017 18



06	- 08	March	2017 19LSST	Joint	Technical	Meeting	2017

Major	open	issues
• The	details	of	the	revision	of	the	DataId concept

• We	believe	making	it	more	concrete	and	limited	will	make	it	substantially	
easier	to	implement

• The	specification	of	concrete	Pipelines	in	terms	of	SuperTasks;	is	it
• Done	purely	Pythonically – i.e.,	a	Pipeline	spec	being	essentially	a	piece	of	
Python	code	that	constructs	an	aggregate	of	SuperTasks – or

• Done	with	some	sort	of	YAML,	JSON,	or	other	text-file	spec?



06	- 08	March	2017 20LSST	Joint	Technical	Meeting	2017

Other	open	issues
• Use	of	community	tools

• It	appears	likely	that	community	tools	like	the	Common	Workflow	Language	
are	compatible	with	the	design	we	have	developed

• It	may	even	be	possible	to	adopt	elements	of	community	Python-based	CWL-
oriented	workflow	systems	(e.g.,	Toil)	to	help	us	build	frameworks

• Additional	research	would	be	useful
• Configuration

• There	is	an	existing	issue	of	how	to	separate	“algorithmic	configuration”	(that	
has	effects	on	the	formal	data	products	of	a	Pipeline)	from	“manner-of-
execution	configuration”	(which	should	not).		The	former	should	be	protected	
against	change	separately	from	the	latter.		This	should	be	a	feature	of	the	
configuration	mechanism	and	be	exposed	through	SuperTask.		(One	crucial	
issue,	for	example,	is	that	data	processed	with	different	“algorithmic	
configurations”	should	not	be	mixed	in	the	same	output	repository.)



06	- 08	March	2017 21LSST	Joint	Technical	Meeting	2017

Current	state	and	next	steps
• Current	state	is,	roughly:	“Looks	like	it	should	work,	but	can’t	commit	
without	making	it	more	concrete”

• I	believe	this	is	not	realistic	to	resolve	with	paper	design	work,	so,	my	
recommendation	is:

• Finish	writing	up	what	we	have	already	learned	more	
comprehensively,	but	then	very	quickly	proceed	to:

• Prototype	implementation	”hack	week”
• Schedule	it?		Perhaps	May	30	– June	2	week?


