Building the Gaia ground segment revisited

William O'Mullane

Gaia Science Operations Centre European Space Astronomy Centre European Space Agency

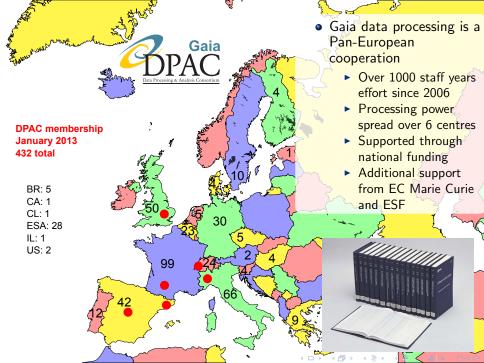
January 10th 2017, LSST Tucson

Or

the good the bad and the ugly.

The western is quintessentially American, that one was Italian though and it was shot in Spain.

Outline



1 Initial Set up

Standards and Tools

Management of Gaia

4 Conclusion

In the beginning

- initial ideas for ground segment were in place for the study in 2000 ESA-SCI(2000)4
- already clear then we would have distributed processing in multiple centres (though not mentioned)
- Intention was to have autonomy between coordination units
- Interviewed several project leaders for O'Mullane (WOM-003) in 2004/5 — tried to learn from them . . .
 - ► Included LSST (Kantor) , SDSS (Borowski)
 - Management came out as the most difficult part of all projects ...so
 I will leave that until last.
- some things started before DPAC simulations and GIS studies for example.
- Finally DPAC is large I am sure you can find someone in DPAC to disagree with anything I say.

In the beginning

- initial ideas for ground segment were in place for the study in 2000 ESA-SCI(2000)4
- already clear then we would have distributed processing in multiple centres (though not mentioned)
- Intention was to have autonomy between coordination units
- Interviewed several project leaders for O'Mullane (WOM-003) in 2004/5 — tried to learn from them . . .
 - ► Included LSST (Kantor) , SDSS (Borowski)
 - Management came out as the most difficult part of all projects . . . so
 I will leave that until last.
- some things started before DPAC simulations and GIS studies for example.
- Finally DPAC is large I am sure you can find someone in DPAC to disagree with anything I say.

Outline

Initial Set up

Standards and Tools

Management of Gaia

4 Conclusion

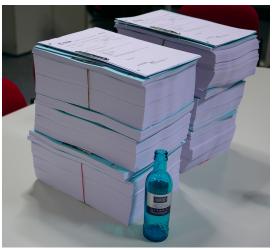
- Very important in large groups
- Which way is up on Gaia, which is a row and column on focal plane, which quaternion to use
- dealt with quite early on in BAS-003
 - \triangleright still Astrium have a different definition for X, Y, Z on Gaia
 - at least in the consortium there is only one could have been much worse
- ullet What is a product, a Work Package why is 10 months = 1 year
- also dealt with early on in WOM-001
- Then there are Acronyms
 http://gaia.esac.esa.int/gpdb/glossary.txt and an acronym tool for TeX files (e.g. Appendix 5)
- having a complete engineering guideline early was good JH-001

- Very important in large groups
- Which way is up on Gaia, which is a row and column on focal plane, which quaternion to use
- dealt with quite early on in BAS-003
 - ▶ still Astrium have a different definition for *X*, *Y*, *Z* on Gaia
 - at least in the consortium there is only one could have been much worse
- ullet What is a product, a Work Package why is 10 months = 1 year
- also dealt with early on in WOM-001
- Then there are Acronyms
 http://gaia.esac.esa.int/gpdb/glossary.txt and an acronym tool for TeX files (e.g. Appendix 5)
- having a complete engineering guideline early was good JH-001

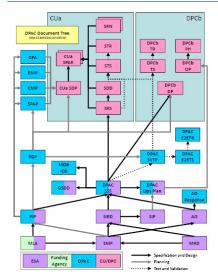
- Very important in large groups
- Which way is up on Gaia, which is a row and column on focal plane, which quaternion to use
- dealt with quite early on in BAS-003
 - \triangleright still Astrium have a different definition for X, Y, Z on Gaia
 - at least in the consortium there is only one could have been much worse
- ullet What is a product, a Work Package why is 10 months = 1 year
- also dealt with early on in WOM-001
- Then there are Acronyms
 http://gaia.esac.esa.int/gpdb/glossary.txt and an acronym tool for TeX files (e.g. Appendix 5)
- having a complete engineering guideline early was good JH-001

- Very important in large groups
- Which way is up on Gaia, which is a row and column on focal plane, which quaternion to use
- dealt with quite early on in BAS-003
 - \triangleright still Astrium have a different definition for X, Y, Z on Gaia
 - at least in the consortium there is only one could have been much worse
- ullet What is a product, a Work Package why is 10 months =1 year
- also dealt with early on in WOM-001
- Then there are Acronyms
 http://gaia.esac.esa.int/gpdb/glossary.txt and an acronym tool for TeX files (e.g. Appendix 5)
- having a complete engineering guideline early was good JH-001

Parameters and data models


- Avoid different values of constants in peoples code . . .
- The Gaia Parameter Database was set up early on for this (de Bruijne et al., 2005)
 - all constants in one place; web searchable configuration controlled (Only updated by Jos De Bruijne)
 - published as constants for Java (can also do C, Fortran...) so you
 may refer to a particular version
- then the actual data model what exactly is an AstroElementary?
 - entire data model defined in multi-user dictionary tool; includes Units on each field.
 - **★** good for astronomers computer people find it harder to handle
 - ▶ from it we generate data instance classes and schemas for storage.
 - ► ONLY data model not processing all objects are dumb (had discussion with KT and Mario on this)
- These are logical extensions of having agreed conventions...

Flight Operations Procedures in MOC


The FOP is followed by the spacecraft operators - the paper copy is just in case the computers fail - could be useful!

But we should avoid write only documents.

Have a standard: DPAC follows ECSS

Doctree by John Hoar (RD-010)

European Cooperation for Space Standardization

- ECSS tailored as in figure
 - ► LaTeX Templates/examples provided (by SOC)
 - Documents are iterated All of this is done for all DPAC products.
 - ► It is very good to have a standard set of documents augmented by technical notes and streamlined ECSS
 - Some still found it too heavy

 other reports requested
 beyond the standard ones.
- DPAC had sufficient QA people $(\sim 1/\text{CU})$ from the start to help with this

Single Sign on Gaia Portal

- http://www.rssd.esa.int/index.php?project=
 MYPORTAL&page=index hosted at ESTEC; set up eons ago...
- Names, emails and affiliations (phone numbers, photo, address) of all Gaia people
- Single login (LDAP) for
 - Livelink for all published documents
 - Wiki for wiki things (meeting setup etc.); always draft nearly always out of date
 - Mantis for all issues
- Same LDAP for SVN, MDB dictionary etc
- Single sign on is perhaps not great but having one LDAP for authentication of everything is fabulous!
- Having information in SVN, Livelink and possibly on a wiki is not great but we do not have a solution
- Having single agreed set of collaboration tools from the outset excellent.

Development tools

- All DPAC code and docs in Subversion, hosted at ESAC
 - ► Access control according to Group membership in the LDAP
- Mantis for centralised issue tracking (includes risks and actions)
 - ALL DPAC issues in one system hosted at ESTEC
 - Jira would probably be better
- Having one language is good (O'Mullane et al., 2011) agreed 2006 (JH-001) — only one verification part is NOT in Java.
 - ► Can have a library of standard routines GaiaTools (Relativity, Field Angle Calculator, Ephemeris handling. . .)
 - I he set of routines were not defined hence GaiaTools is a bit of hodgepodge mess...
 - Counter argument for common tools is (unnecessary) interdependence...
 - all libs in Nexus builds against these no full builds
 - builds with Ant; Maven might be the thing to use now
 - ▶ automated builds with Hudson/Jenkins (previously cruisecontrol)
 - ▶ virtual machines make some reasons for Java invalid LSST not 1

Development tools

- All DPAC code and docs in Subversion, hosted at ESAC
 - ► Access control according to Group membership in the LDAP
- Mantis for centralised issue tracking (includes risks and actions)
 - ALL DPAC issues in one system hosted at ESTEC
 - ► Jira would probably be better
- Having one language is good (O'Mullane et al., 2011) agreed 2006 (JH-001) — only one verification part is NOT in Java.
 - Can have a library of standard routines GaiaTools (Relativity, Field Angle Calculator, Ephemeris handling...)
 - ★ The set of routines were not defined hence GaiaTools is a bit of hodgepodge mess...
 - ★ Counter argument for common tools is (unnecessary) interdependence...
 - ▶ all libs in Nexus builds against these no full builds
 - builds with Ant; Maven might be the thing to use now
 - ▶ automated builds with Hudson/Jenkins (previously cruisecontrol)
 - virtual machines make some reasons for Java invalid LSST not ?

Outline

1 Initial Set up

2 Standards and Tools

Management of Gaia

4 Conclusion

Communication

- Internal communication:
 - ▶ Some say could have been better.
 - Few focused working groups and working meetings.
 - As for any project cost of entry for new people is very high no obvious solution.
- ESA policy initially to reduce contact between DPAC and Astrium (who construct Gaia) not good.
- External communication:
 - Perhaps could have had a better DPAC website.
 - ESA PR also not great (ok as they point out they have a tiny fraction of NASA budget).
 - ▶ Publication policy was dealt with very late.

Requirements Management

- Some requirements at an appropriate level are very useful.
 - Many could have been better formulated.
 - Separation of performance, software, and science requirements should have been clearer.
- All requirements and test reports then ingested in the Information Management Tool (Comoretto et al., 2012):
 - ► Automated testing provided much requirements verification.
 - ▶ Operations Rehearsals used to validate many requirements.
 - Could probably have put more effort in this earlier.
- Cumbersome ESA Reviews are an unavoidable part of all this:
 - ▶ Just do it. that means many expected documents ..
 - ► Had to convince all collaborators to also support reviews.
 - ► Projected cohesive unified team image
 - ▶ on LSST believe you have no choice in this less formal reviews which is probably worse for you perhaps better for LSST goals

Management and science I

All large projects, and especially science projects, have management issues.

- In 2006 we had a big management training week for the DPAC management — though sceptical to start most found it good:
 - Despite this management support was still lacking.
- Science project management is a little different, still books like (Handy, 1993) are quite useful.
- Cyclic (Agile type) development seems well suited to science:
 - ▶ We chose six month cycles probably too long (good for reporting).
 - ► Some prototypes started very early (O'Mullane & Lindegren, 1999).
 - ► We have great simulations they started in 1998 before Gaia was accepted:
 - * Still they always seemed to be a little behind what people wanted we have no solution for that, could not start earlier.
 - ★ Simulator fell out of the ECSS rigour testing etc. . .

Management and science II

- We did a lot of testing; some tests were probably not appropriate in hindsight.
- ▶ Despite aiming for test driven development NOT ENOUGH effort in testing and many systems only recently got continuous integration.
- Scientific institutes are not good at managing things like software projects (hard anyway):
 - ► Interface control between software was insufficient data model was not enough. perceive this in LSST now and Datamodel is not as rigorous
 - ▶ Perhaps ESA should have taken control of all critical software.
 - ESA is stepping back from this type of role in future missions and was not totally happy about the level of involvement of ESAC in DPAC.
- Industrial contracts for scientific software are very difficult:
 - ▶ Did an experiment with this on Gaia very early on.
 - ► XMM have their own woeful tale to tell.

Management and science III

- Science consortia need managers and engineers already in the early phases
 - * Noted lack of *engineering* in many areas lack of software engineers in initial phases, many hires were astronomers.
- DPAC too collaborative?
 - ▶ DPAC was broadly inclusive CU leaders on paper had the chance to include or not groups and WPs but in fact no one was left out.
 - This has lead to some inefficiencies perhaps we could be smaller and more focused.
 - We possibly should have jettisoned some work packages, groups, and individuals early on.
 - ► In a proper phased approach some CUs could probably have started 2 years later with minimum presence at kick off
- Too flexible and too inflexible:
 - ► There are many configuration control boards and other groups to manage change.

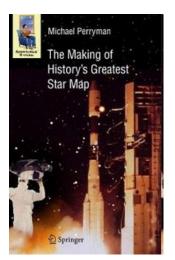
Management and science IV

- ▶ No one wants any change to anything until the moment they want a change then it should be immediate!
- We have found no solution to this.

Outline

Initial Set up

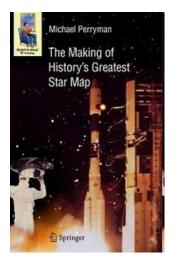
2 Standards and Tools


Management of Gaia

4 Conclusion

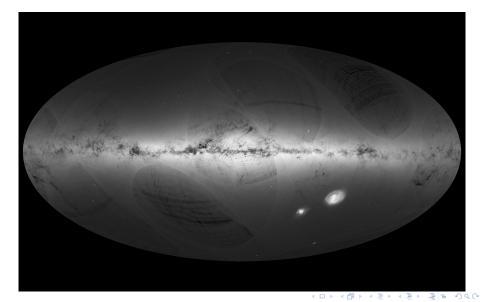
Conclusion

- many of us dreamed of a Gaia Processing Institute - only a dream for us.
- Much mentioned here is contentious others do not see it exactly as I do.
- For me DPAC started of well largely due to strong initial leadership especially from Perryman
- All agree we are fortunate to have some excellent people in DPAC
- thanks to DPACE for their input to this presentation and to DPAC for all their work over the past years.


Perryman (2010)

Conclusion

- many of us dreamed of a Gaia Processing Institute - only a dream for us.
- Much mentioned here is contentious others do not see it exactly as I do.
- For me DPAC started of well largely due to strong initial leadership especially from Perryman
- All agree we are fortunate to have some excellent people in DPAC
- thanks to DPACE for their input to this presentation and to DPAC for all their work over the past years.


Perryman (2010)

It worked out pretty well!

Outline

5 Acronyms

6 References

Acronyms I

The following table has been generated from the on-line Gaia acronym list:

Acronym	Description
API	Application Programming Interface
CU	Coordination Unit (in DPAC)
DM	Data Management (LSST)
DPAC	Data Processing and Analysis Consortium
DPACE	Data Processing and Analysis Consortium Executive
ECSS	European Cooperation for Space Standardisation
ESA	European Space Agency
ESAC	European Space Astronomy Centre (VilSpa)
ESF	European Science Foundation
ESTEC	European Space research and TEchnology Centre (ESA)
FOP	Flight Operation Procedure (Plan)
GIS	(Astrometric) Global Iterative Solution
IOA	Institute of Astronomy (Cambridge; also denoted IOA)
LDAP	Lightweight Directory Access Protocol
LSST	Large Synoptic Surrvey Telescope
LTD	LSST the Docs
LaTeX	(Leslie) Lamport TeX (document markup language and document preparation system)
MDB	Main Database
MOC	Mission Operations Centre
NASA	National Aeronautics and Space Administration (USA)
PR	Progress Report
QA	Quality Assurance

Acronyms II

SDSS	Sloan Digital Sky Survey
SOC	Science Operations Centre
SVN	SubVersioN
TOC	Table of Contents
USA	United States of America
WP	Work Package
XMM	X-ray Multi-mirror Mission (ESA; officially known as XMM-Newton)

Outline

5 Acronyms

6 References

References 1

- [BAS-003], Bastian, U., 2007, Reference systems, conventions and notations for Gaia, GATA-CA-SP-ART-BAS-003.
 - URL http://www.rssd.esa.int/cs/livelink/open/358698
- Comoretto, G., Gallegos, J., Els, S., et al., 2012, In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8449 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ADS Link
- de Bruijne, J.H.J., Lammers, U., Perryman, M.A.C., 2005, In: C. Turon, K. S. O'Flaherty, & M. A. C. Perryman (ed.) The Three-Dimensional Universe with Gaia, vol. 576 of ESA Special Publication, 67-+, ADS Link
- [RD-010], Drimmel, R., Els, S., O'Mullane, W., et al., 2014, DPAC Project Development Plan, GATA-CD-PL-INAF-RD-010.
 - URL http://www.rssd.esa.int/cs/livelink/open/2786669
- [ESA-SCI(2000)4], GAIA Science Advisory Group, 2000, GAIA. Composition, Formation and Evolution of the Galaxy [The GAIA Study Report (ESA-SCI(2000)4)], ESA-SCI(2000)4.
 - URL http://www.rssd.esa.int/cs/livelink/open/359232
- Handy, C., 1993, Understanding organizations, Penguin Books, London, England New York, N.Y., USA
- [JH-001], Hernandez, J., 2014, Main Database Interface Control Document,
 - GAIA-C1-SP-ESAC-JH-001,
 - URL http://www.rssd.esa.int/cs/livelink/open/2786145
- [VI-001], Innocente, V., 2007, External review report for Gaia SOC/DPAC SRR, VI-001,
 - URL http://www.rssd.esa.int/cs/livelink/open/2803649
- [VI-002], Innocente, V., 2009, External review report for Gaia SOC/DPAC DR, VI-002.
 - URL http://www.rssd.esa.int/cs/livelink/open/2905956

References II

[WOM-003], O'Mullane, W., 2005, Large scientific data systems - analysis of some existing projects and their applicability to Gaia,

GAIA-C1-TN-ESAC-WOM-003,

URL http://www.rssd.esa.int/cs/livelink/open/497678

[WOM-019], O'Mullane, W., 2007, CU1 Progress Report #1,

GAIA-C1-PR-ESAC-WOM-019,

URL http://www.rssd.esa.int/cs/livelink/open/2803205

[WOM-001], O'Mullane, W., Lammers, U., 2007, Work breakdown structures for DPAC, GAIA-C1-TN-ESAC-WOM-001.

URL http://www.rssd.esa.int/cs/livelink/open/497865

O'Mullane, W., Lindegren, L., 1999, Baltic Astronomy, 8, 57, ADS Link

O'Mullane, W., Luri, X., Parsons, P., et al., 2011, ArXiv e-prints, ADS Link

Perryman, A., 2010, The Making of History's Greatest Star Map, Astronomers' universe, Springer, URL http://books.google.es/books?id=P-5pZ8GNuPIC