
SQuaRE
Team Introduction & Development Process

Frossie Economou • frossie@lsst.org

What John et al. said
This talk is the diff with the SQuaRE branch

SQuaRE’s role
Science|Software? Quality and Reliability Engineering

• Automated quality control/testing [cf. LDM-151]

- Harness for monitoring software and data quality

- Regression, trending analysis and alerts

• Developer infrastructure supporting software QA (IEEE 730)

- Documentation

- Continuous Integration

- Communication

• Code distribution and Science Platform environment

• No longer doing science verification, KPMs or integration

3

SQuaRE’s people

FTEs: 4.5 EVM (5.4 total) across 7 humans
100% and in Tucson unless otherwise indicated as of Dec 2016

• Jonathan Sick

• Adam Thornton 🆕

• JMatt Peterson

• Frossie Economou (T/CAM, ~90%)

• Angelo Fausti (75%)

• Josh Hoblitt (~50%, remote)

• Michael Wood-Vassey (Acting Science Lead, ~25%, remote)

All construction-era hires: 4 astronomy background, 3 other background, most
would now be described as devops/full-stack engineers

4

Developer services

For SQuaRE, Construction is Operations
Currently in production or upcoming this cycle

• pipelines.lsst.io - stack release and stack documentation

• developer.lsst.io - developer documentation

• [dmtn|sqr]NNN.lsst.io - technote platform

• ci.lsst.codes - continuous integration platform

• squash.lsst.codes - QC harness and validation framework

• status.lsst.codes 🆕 service status monitoring

• api.lsst.codes [coming soon] 🆕 microservices platform for monitoring etc

• community.lsst.org forum

• slack chatbot 🆕

• .. etc…

5

Team Process I
Constraints (general and specific)

• EVM planning cycle

- High stakes

- As done by NSF is not matched to Agile process

- Agile For Government™ can be a workable compromise…

• Many developer-facing services in production already

- As users take up a service, obvious what features are high priority

- Nobody wants to tell a dev they have to wait 6+ months for their
request to get serviced, but EVM…

• Also have our LDM-151 development capabilities to deliver

• Generalists/devops engineers but small team, risk spreading too thin or
context-switching too often

6

Team Process II
Cycle Planning
At 3-month-intervals I classify five types of epics:

• Improvements to production services

- timebox (aka “bucket”) epics

- 1-person stories, 1 or N people per epic

• New services

- MVP approach

- 1-person stories, 1 person per epic

• Development roadmap for LDM-151 defined work

- Closest to classic agile sprint

- typically one 4-week most-hands sprint per 3-month half-cycle

• Ad-hoc

- DM (Selected personnel)

• Non-DM time blocks (for some personnel)

7

Team Process III
Generating Fully Loaded Cycle Plan

8

• Minimum 1-week-per-dev epics…

• quantised to units of 1 week-per-dev “cards” [literally]

• fully planned across all weeks in the cycle

• mitigate context switching as much as possible by constraining the
technical stack

• cycle plan for Kevin using same spreadsheet as other T/CAMs

• card board used similarly to a Kanban board during the cycle

Team Process IV
Example: the S17A board

9

N-hand sprint
Ad-hoc

Other commitment

1-person

Bucket

Team Process V
In-cycle process

10

• Every week identify in progress epic card for each dev

• Adjust if it makes sense (eg blocked, urgent issue)

• Discuss scope and technical approach

• Identify stories in that epic for next goal

• Daily not-really-stand-ups to

- round table on status

- co-ordinate work with team-mates working with same card

- informally peer-review new technical approaches

- raise potential threats to estimate

- drink coffee

• Normal DM process (ticket branches, review etc for most tickets)

• Cowork session one afternoon a week

• I review and sign off before epic can be closed

Commentary I
The Good, the Bad & the Ugly

11

Nobody in their right mind would choose this over an agile methodology. That said:

• It’s actually not horrific. Team devs are shielded from most of the details and
focus on opening and closing their tickets

• I do have estimation feedback at the Epic level

• “Staying in JIRA” is a godsend (thx Kevin!)

• Move to half-cycles doubled work but increased accuracy

• You sometimes have to take variance on the chin to do the right thing (eg.
allow a dev with momentum to do one more feature before losing their
context) - cycle end is always Solomon’s judgement

• Unplanned situations make for hard choices

• Disconnect with folks in LoE mode over the realities is stressful

Commentary II
Is “The Process” a problem?

12

• Sure, it’s “ditch-digging” work for T/CAMs

• But it’s not that much more work over normal technical planning and reporting
in normal agile environments (~0.15 FTE more maybe)

• Team is not far from peak efficiency in many contexts

• However I am spending twice as much time managing a much smaller team
than I did in a typical agile environment

- Lots of higher management requests (LDM-151, WBS, Planning Packages,
re-plan, slides, review materials etc etc)

- Inefficient decision-making frequently wreaks havoc with finishing things
(too many cooks, hard to find someone to just call it)

- Poorly defined internal interfaces result in too much P2P negotiation

- We’re not leveraging the stuff we do (eg. monthly report) outside T/CAMs

