SQuaRE
Team Introduction & Development Process

Frossie Economou e frossie@lsst.org

% 'SV

Large Synoptic Survey Telescope

What John et al. said

This talk is the diff with the SQuaRE branch

s S

Large Synoptic Survey Telescope

SQuaRE’s role IS ST

Automated quality control/testing [cf. LDM-151]
Harness for monitoring software and data quality
Regression, trending analysis and alerts

Developer infrastructure supporting software QA (IEEE 730)
Documentation
Continuous Integration
Communication

Code distribution and Science Platform environment

No longer doing science verification, KPMs or integration

SQuaRE’s people 1S Sy

100% and in Tucson unless otherwise indicated as of Dec 2016
Jonathan Sick
Adam Thornton &8

JMatt Peterson

(T/CAM, ~90%)
Angelo Fausti (75%)
Josh Hoblitt (~50%, remote)
(Acting Science Lead, ~25%, remote)

All construction-era hires: 4 astronomy background, 3 other background, most

would now be described as devops/full-stack engineers

Developer services 1S ST

For SQuaRE, Construction is Operations

Currently in production or upcoming this cycle

pipelines.Isst.io - stack release and stack documentation
developer.lsst.io - developer documentation
[dmtn|sqr]NNN.Isst.io - technote platform

ci.Isst.codes - continuous integration platform
squash.lsst.codes - QC harness and validation framework

status.lsst.codes &8

service status monitoring

api.lsst.codes [coming soon] ® microservices platform for monitoring etc
community.lsst.org forum

slack chatbot &8

.. etc...

Team Process | S ST

EVM planning cycle
High stakes
As done by NSF is not matched to Agile process
Agile For Government™ can be a workable compromise...
Many developer-facing services in production already
As users take up a service, obvious what features are high priority

Nobody wants to tell a dev they have to wait 6+ months for their

request to get serviced, but EVM...
Also have our LDM-151 development capabilities to deliver

Generalists/devops engineers but small team, risk spreading too thin or

context-switching too often

Team Process I

At 3-month-intervals | classify five types of epics:
Improvements to production services
timebox (aka “bucket”) epics
1-person stories, 1 or N people per epic
New services
MVP approach
1-person stories, 1 person per epic
Development roadmap for LDM-151 defined work
Closest to classic agile sprint
typically one 4-week most-hands sprint per 3-month half-cycle
Ad-hoc
DM (Selected personnel)

Non-DM time blocks (for some personnel)

Team Process |l S ST

Minimum 1-week-per-dev epics...
quantised to units of 1 week-per-dev “cards” [literally]
fully planned across all weeks in the cycle

mitigate context switching as much as possible by constraining the

technical stack
cycle plan for Kevin using same spreadsheet as other T/CAMs

card board used similarly to a Kanban board during the cycle

Team Process IV S ST

Other commitment
Example: the S17A board

N-hand sprint

Ad-hoc
S

s B R E|YE B T
n) =/ L ey 7 = ‘ -

/

AlE oc Do 5?{,30:_—

j ! Saubsy AD- Hoc
ettt ayW i e 1
q\

gu?
7) Eﬂ:“\
2 |2 -|w
SQopsy

Bucket

g4l
|8 |

¢ -
Soupdd Bron | eewe |TONC L Locenss | RELSRSE | AD-poc
VOERRD

\ o418 Dﬂ’*‘m W)“’“ﬂ QuAY T

1-person

e’
=

DM€ ¢
AD-Hoc
Pocene| | Docene-

SQohsy 5Qu A :
SQuasd =4
249< ; g435 REFF <% 5 :

Team Process V

Every week identify in progress epic card for each dev
Adjust if it makes sense (eg blocked, urgent issue)
Discuss scope and technical approach
Identify stories in that epic for next goal
Daily not-really-stand-ups to
round table on status
co-ordinate work with team-mates working with same card
informally peer-review new technical approaches
raise potential threats to estimate
drink coffee
Normal DM process (ticket branches, review etc for most tickets)
Cowork session one afternoon a week

| review and sign off before epic can be closed

10

Commentary | [ENS]

Nobody in their right mind would choose this over an agile methodology. That said:

It's actually not horrific. Team devs are shielded from most of the details and

focus on opening and closing their tickets

| do have estimation feedback at the Epic level

“Staying in JIRA" is a godsend (thx Kevin!)

Move to half-cycles doubled work but increased accuracy

You sometimes have to take variance on the chin to do the right thing (eg.
allow a dev with momentum to do one more feature before losing their

context) - cycle end is always Solomon’s judgement
Unplanned situations make for hard choices

Disconnect with folks in LOE mode over the realities is stressful

11

Commentary I [ENS]

Sure, it's “ditch-digging” work for T/CAMs

But it's not that much more work over normal technical planning and reporting

in normal agile environments (~0.15 FTE more maybe)
Team is not far from peak efficiency in many contexts

However | am spending twice as much time managing a much smaller team

than | did in a typical agile environment

Lots of higher management requests (LDM-151, WBS, Planning Packages,

re-plan, slides, review materials etc etc)

Inefficient decision-making frequently wreaks havoc with finishing things

(too many cooks, hard to find someone to just call it)
Poorly defined internal interfaces result in too much P2P negotiation

We're not leveraging the stuff we do (eg. monthly report) outside T/CAMs

12

