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The parameters studied here are the proper motion and parallax. In the following we have
studied only observations inr, i, z and y filters, as these offer a numerous and relatively
homogeneous data set.

Proper Motion

The proper motion is measured from the apparent motion over an interval of time. In order
to capture the typical intervals available from a set of visits, the visits have been time-
ordered, and the intervals evaluated pair-wise between the first and last visits, the second
and next to last, etc. The longer intervals will be of greatest weight in calculating proper
motion.
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Figure 1. Distribution of visit pairs for the full 10-year survey. (left) The number of visit
pairs vs interval, with modulation which is recognized to be due to seasonal availability of
fields. (Graph file title: opsim3_61_propermotion_allfields-1.png). (right) The fraction of
visit pairs with interval greater than 50% of the simulation length, for each field. (Graph
file title: opsim3_61_propermotion_50percent-1.png). The Field ID is an index which
approximately, but not exactly, tracks the LSST Field Number.

For a relatively flat distribution of visits with time, the mean visit interval would be
approximately 5 years.
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Figure 2. (left) Field count vs. the percentage of visit intervals greater than 50% of the run
length. (Grapbh file title: opsim3_61_propermotion_50percentFields-1.png). (right) A
cumulative integral of the Field Count histogram above, starting from large values. (Graph
file title: opsim3_61_propermotion_50percentFields_cumulative-1.png).

As a Proper Motion Metric, we adopt the mean of the distribution in Figure 2 (left). A
schedule which maximizes this number will be well suited to proper motion analysis.

Parallax Factor Merit

The weight of observations in calculation of parallax is approximately proportional to the
offset of the earth from the sun with respect to the line of sight to the target (described by
the Parallax Factor). In the following we consider only the RA component of the Parallax
Factor, since it dominates the accuracy of the result (the Earth’s orbital plane is close to the
ecliptic). It can have values from -1 to 1 AU (approximately).
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Figure 3. Parallax Factors for all visits to all fields. (Graph file title:
opsim3_61_parallax_factor_fields-1.png).



Since parallaxes depend on the difference in parallax factor between visits, we have here
paired visits to a field, first ordering the visits by parallax factor, and then pairing the
smallest with the largest, then second smallest to second largest, etc. Each pair has a
Parallax Factor Difference (PFD), which can range in absolute value from 0 to ~2.

Mean Parallax Factor Difference vs Field ID
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Figure 4. (left) Parallax Factor Differences (PFD) for all visit pairs (paired, as described) to
all fields. (Graph file title: opsim3_61_parallax_factor-1.png). (right) Mean PFD for each
field. (Graph file title: opsim3_61_parallax_diff mean-1.png).

For a Parallax Factor Metric, we adopt the mean value of the Mean Parallax Factor
Difference for all fields. A large value (greater than or ~ 1) will show that visits are spaced
to support parallax measurement, whereas a small value will show the opposite.

Correlation of Parallax Factor with Hour Angle

The evaluation of parallax can be compromised if the visits are obtained so that there is a
strong correlation between Parallax Factor and Hour Angle (HA), since the HA-dependent
chromatic dispersion can be confused with shift due to Parallax.
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Figure 5. Correlation of Parallax Factor with Hour Angle for all fields. (Graph file title:
opsim3_61_correlation-1.png).

For our purposes the absolute value of the correlation is of interest, and Figure 6 shows a
histogram of number of fields binned by the absolute value of the correlation and a
cumulative distribution for the same data
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Figure 6. (left) Frequency of occurrence of Parallax Factor correlations. (Graph file title:

opsim3_61_correlation_abs_hist-1.png). (right) Cumulative distribution of frequency of

occurrence of Parallax Factor correlations. (Graph file title:

opsim3_61_correlation_cum_abs_hist-1.png).

Experience shows that absolute value of the correlation < 0.5 will allow sufficient
suppression of chromatic dispersion effects. Metric adopted for the Correlation Factor is
the cumulative number of fields which satisfy this criterion.

Summary of Astrometric Metrics

Simulation 3.61

Proper Motion Metric 27.3%
Mean percent of visit intervals > 5 yr

Parallax Factor Metric 0.92 AU
Mean for all fields of Parallax Factor Difference

Parallax Factor Correlation Metric 3038 fields
Fields with Abs(correlation factor) <0.5

Appendix: Algorithms
Proper motion
* Foreach field set
* For each rizy visit to each field in a set:

o Compile a list of all N visits, and order them by time.
o Compute the times (Dt) between visit 1 and N, 2 and N-1, etc.



o Compute N5, the fraction of Dt times which exceed 50% of the simulation
length.
* Prepare a histogram of the fraction N5 vs field index number.
* Find the mean value of N5 for all fields.

Parallax factor

* The calculation

o sA=sin(RA),
cA = cos(RA)
sD = sin(Dec),
¢D = cos(Dec)
sE = sin(obliquity of the ecliptic),
cE = cos(obliquity of the ecliptic)
sS = sin(solar longitude),
¢S = cos(solar longitude)
R = distance to sun in AU = ~1.0
Parallax(ra) = +R*(cE*cA*sS - sA*cS)
Parallax(dec) = +R*((sE*cD - cE*sA*sD)*sS - cA*sD*cS)

» The Parallax(dec) factor can be ignored for current purposes.
* The parallax factor for a single observation will be in the range -1 to +1.
* For a pair of visits, the weight for parallax calculation will be ~ proportional to the
difference of the parallax factors (range 0.0 to 2.0).

* For each gri visit to each field:

o Make an ordered list of RA parallax factors, PF

o Compute the Parallax Factor Differences (PDF) between entries 1 and N, 2

and N-1, etc. This creates a list of PDF values from largest to smallest

* Find the mean value of PDF for all the visits to each field.
* Plot the mean for each field vs field number.
* Compute the mean for all fields
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Differential refraction correlation

» For each rizy visit to each field:
o Make an ordered list of RA parallax factors, PF, with associated hour angle
HA
o Compute the correlation, C, of the PF with the HA.
» Prepare a histogram of the number of fields vs C values.
o Alow value for C is preferred
= Compute the number of fields with C less than 0.5
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It is valuable to have at least one outstanding quality image of each field early in the survey.
These are valuable for developing source catalogs (resolving sources that are blended in
poorer images). Also, experience shows that a reference image for detection of transients is
most effective if obtained at higher angular resolution than the images that are compared to
it.

In order to characterize image quality, we will use the concept of delivered image quality
(DIQ) which will be characterized by the FWHM.

Best Images Achieved

Figure 1 shows the distribution of number of fields with the best DIQ visit for all r or i visits
to all fields as achieved after 1, 3 or 10 years.
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Number of Fields vs DIQ for 10yr (ri)
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Figure 1. (top left) The number of fields for which the best single image obtained in
r or i filters is in the range of the histogram bins, after 1 year. (top right) After 3
years. (bottom) On completion of the full 10 year survey.

As formal metrics, we adopt the median value of the histograms in Figure 1. (The median is
robust against moderate skewing due to outliers in a distribution.)

Typical Image Quality Achieved

Another important measure of image quality is the typical DIQ achieved for all images in
each field. Again we adopt the median, now on a per field basis. Figure 2 shows the
distribution of median FWHM for all r and i visits to all fields.
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Figure 2. Median FWHM per field for all r and i visits to all fields after 10 years.

As a simple metric to characterize the seeing of all visits to all fields, we adopt the median of
the median seeing per field in Figure 2 - hence the median of the medians.



Changes under Consideration

The analysis may be split to treat r and i separately, with graphs and metrics for each, since
the image quality will differ for the two wavelengths. Also, the analysis may be repeated for
just the wide-fast-deep survey fields, as they are particularly critical for early assessment.

Metrics Summary

Simulation 3.61

Median best FWHM per field after 1 year 0.52 arcsec
For all r or i visits to fields

Median best FWHM per field after 3 years 0.48 arcsec
For all r or i visits to fields

Median best FWHM per field after 10 years 0.45 arcsec
For all r or i visits to fields

Median best FWHM per field after 1 year 0.55 arcsec
For all r visits to fields

Median best FWHM per field after 3 years 0.50 arcsec
For all r visits to fields

Median best FWHM per field after 10 years 0.47 arcsec
For all r visits to fields

Median best FWHM per field after 1 year 0.56 arcsec
For all r visits to fields

Median best FWHM per field after 3 years 0.50 arcsec
For all i visits to fields

Median best FWHM per field after 10 years 0.46 arcsec
For all i visits to fields

Median FWHM for all visits after 10 years 0.75 arcsec
For all r and i visits to fields

Appendix: Algorithms

¢ For each field in the Universal Proposal:
— Make a time sequence of all ri visits
— Find the best seeing image in the first 1 yr, 3yr and 10 yr
— Find the median seeing for 10 years
¢ Create Best Seeing histograms from 0.3 to 1.5 arcsec by steps of 0.05
— Make 3 histograms, for 1, 3 and 10 years.



— For each field, enter a count in the histograms corresponding to the best
seeing riimagein 1, 3,10 yr.
¢ Create a Median Seeing histogram from 0.3 to 1.5 for 10 years only
— Enter a count for the median ri seeing of each field
¢ Plot all histograms on the same figure
— For metrics, find median values for each histogram
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The simulated values of delivered image quality (DIQ) are based in part on “fixed” factors
such as the instrument performance, and in part on uncontrollable factors such as the
seeing statistics. One factor that is largely under LSST control is the observing hour angle,
as observations at larger zenith distance will be achieve poorer image quality in accordance
with the atmospheric model. The focus of this analysis is to determine whether or not the
observing sequence is obtaining observations at or near the lowest available airmass (hence
with the best DIQ),

In evaluating image quality, the visits in the r and i filters are examined separately, since
they are singled out in the SRD for observation under superior seeing conditions. In the

discussion below, the DIQ will be described by the FWHM.

Seeing and Ideal Seeing
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Figure 1. (left) FWHM for all r and i filter visits to all fields that were observed as a
part of the wide-fast-deep (WFD) survey. ( right) The corresponding cumulative
distribution.

We adopt the mean FWHM as a metric. As a benchmark, we adopt the mean “ideal” FWHM
width for comparison. The “ideal” is that which would have been realized if the same
observation had been made at the altitude of field transit, hence representing performance



that might be achieved in a more optimized schedule. The ratio of achieved to ideal FWHM
width is a measure of potential gains with different survey optimization.

Airmass and Normalized Airmass

The role of observing hour angle can be seen more directly by looking at the airmass. Of
course the observing airmass for targets partially reflects their declination, which is not a
free parameter. In order to remove this from the discussion, we have used the concept of
normalized airmass, which is the ratio of the observing air mass to the airmass for that
target at transit.
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Figurre 2. (left) Normalized Airmass for all r and i visits to all Universal Proposal
fields but not including visits for NEO search. (right) A similar figure for all visits in
all filters to the same fields. Note peaks near 1.0. Red curves correspond to visits
west of meridian.

The mean value of the normalized airmass is adopted as a metric.
Summary of Image Quality and Airmass Metrics
Simulation 3.61

Mean achieved FWHM 0.77 arcsec
For r and i visits to WFD survey fields

Mean ideal FWHM 0.70 arcsec
For r and i visits to WFD survey fields

Mean normalized airmass 1.16
For r and i visits to WFD survey fields

Mean normalized airmass 1.15
For visits in all filters to WFD survey fields



Appendix: Algorithms

¢ For all Universal Proposal Fields (excluding NEO sweetspot visits)
— For all ri visits
e Prepare a histogram of the incidence of the seeing S.

— Compute the integral of S starting at 0.0, to give the
frequency of occurrence of S less than a given value.

— Find the 25, 50 and 75% points in the frequency of
occurrence.

¢ Prepare a histogram of the incidence of the normalized seeing, NS,
defined as the ratio of S to the value of S that would be obtained
under median conditions at transit (at the wavelength and airmass)

— Compute the integral starting at 0.0, to give the frequency of
occurrence of NS less than a given value.

— Find the 25, 50 and 75% points in the frequency of
occurrence.

— Forjustri visits, and separately for all visits in all filters
¢ Prepare histograms of the normalized airmass, NA, defined as the
ratio of the visit airmass to the airmass for the field at transit. Values
will range from 1.0 and up. Make separate histograms for visits with
positive HA and for negative HA.

— Compute the integral (summing both postive HA and
negative HA data) starting at 1.0, to give the frequency of
occurrence of NM less than a given value.

— Find the 25, 50 and 75% points in the frequency of
occurrence
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Optical aberrations in the telescope or camera can introduce biases that are troublesome
for LSST study of gravitational weak lensing. To provide a control on some possible sources
of systematic image ellipticity, and to reduce them by randomization, it is wished to observe
with a range of camera and telescope angles with respect to the target field and to gravity.
Acquisition of observations with a range of angles will also benefit precision calibration of
photometry by moving each reference star over different detector regions.

The relevant angles are partially described in the simulations by the rotator sky position
(RotSkyPos), and the rotator telescope position, RotTelPos. RotSkyPos is the angle between
North in the image and the focal plane "up"” reference. The RotSkyPos = RotTelPos -
parallactic-angle. RotTelPos is the angle between the telescope and the telescope rotator.

This analysis is applied to fields of the wide-fast-deep survey (WFD), for all visits in either r
or i filters.

Distribution of Angles

Figure 1 shows the distribution of RotTelPos. (The angles were incremented by 180 degrees
for Figure 1 to show a connected distribution.)
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Figure 1. The value of the rotator angle (RotTelPos + 180) which describes the angle of the
camera with respect to the telescope, for all r and i visits to WFD fields. (Graph file title:
opsim3_61_rotTel_pos.png).



In operation, the RotTelPos is determined as follows. For each filter change, the rotator is
moved to a “zero” position. After that the rotator position is moved only to track while on a
target, and thus wanders away from “zero”. We find that the “zero” is indeed at zero
degrees. The peak at zero is presumably due to a minority of rapid filter changes that
enhanced the relative number of observations at this angle.

Figure 2 shows the distribution of RotSkyPos for all visits to all WFD fields.
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Figure 2. The distribution of RotSkyPos, which is the angle between North in the image and
the focal plane "up" reference, for all r and i visits to WFD fields. (Graph file title:
opsim3_61_rotSky_pos.png).

This distribution reflects in part the rotation of the sky with respect to the optical axis of the
Alt-Az telescope. If the distribution of observations with hour angle is asymmetric, it will
contribute structure to this figure, blurred by the random walk of rotator angle with respect
to telescope.

Randomization of Angles
In an analysis of individual image shapes, it will be useful to have a wide distribution of

angles for the visits to each field. Figure 3 show frequency of occurrence histograms of the
number of fields against the RMS variation of angle as determined on a per field basis.
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Figure 3. (left) Frequency of occurrence of an RMS RotTelPos per field (angle in
radians). (right) Frequency of occurrence of an RMS RotSkyPos per field (angle in
radians). (Graph file titles: opsim3_61_rotTel_pos_rms.png, and
opsim3_61_rotSky_pos_rms.png)

RMS variations of order 1 radian indicate a good distribution on the half-circle.

As metrics we adopt the mean values of the histograms in Figure 3.

Metric Summary

Simulation 3.61

Mean of RMS RotTelPos per field 0.90 radians
For all visits to Universal Proposal fields

Mean of RMS RotSkyPos per field 1.22 radians
For all visits to Universal Proposal fields

Appendix: Algorithms

Definitions
* rotTelPos = angle (in radians) between the telescope and the telescope rotator
* rotSkyPos, is the angle (in radians) between North in the image and the focal plane
"up" reference
* rotSkyPos = rotTelPos - parallactic-angle

Rotator Metrics



Process each Universal Proposal field.
For each field assemble a list of rotSkyPos and rotTelPos angle values for all ri visits.
Compute the RMS value for rotSkyPos and rotTelPos angle for each field
Prepare a histogram for each field of rotSkyPos and rotTelPos angle, in bins of 0.1
radians.
Prepare a histogram for the rms values for all fields in bins of 0.1 radians.
As metrics
o Compute the mean of the rms values for rotSkyPos and rotTelPos angle.
o Count the number of fields that have rotSkyPos less than RMSmin (where
RMSmin = 0.4)
o Count the number of fields that have rotTelPos less than RMSmin (where
RMSmin = 0.4)
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LSST will detect many asteroids. Associating detections will be very difficult owing to large
numbers and rapid motions. In order to support linking of detections (tracklets) and
merging of tracklets into orbits, it will be important to have sufficiently dense sampling of
each target. The Solar System metrics examine a simulation for groupings of detections that
support asteroid studies. The sampling characteristics studied include visit pairs and
triples in a single night, groupings of nights during a lunation, and availability of multiple
groupings during separate lunations.

The Approach

The approach is described here algorithmically to clarify what is studied and how a set of
parameters control the planned metrics. The adopted values for the parameters are
collected at the end of the document with the results summary.

For each field, we make a list of all visits in any of filters griz. We select Nights that have at
least one close Pair of visits with temporal spacing At that satisfies search criteria (Tmin < At
< Tmax). For each such night we note the number of additional visits during that night, since
nights with three visits more strongly constrain the tracklets of moving targets.

We then find Groups of Nights. A Group must include at least Nujgnis different qualifying
nights within a defined time window (Nuays). We use a sliding window, so a Night can
participate in more than one group.

Since Groups may overlap, it is also valuable to know something about their temporal
distribution. This is obtained by counting the number of Lunations that have at least one
Group, and by counting the number of fields that have groups in at least 3 successive
lunations.



Pairs, Groups, and Lunations

Figurl 1 shows some basic data for total observations, observation pairs, groups, groups
with at least one 3-visit night, and lunations with groups.
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Figure 1. (above left) For each calendar night during the survey, the red data show
the total number of visits, and the green data the number of pairs that satisfy the
pair criteria. (above right)For each field, the figure shows the number of qualifying
Groups obtained (red) and also the number with at least one night having 3 visits
(green). (below) The number of separate lunations that have at least one qualifying
Group for each field.

Figure 2 shows the distribution of the number of groups per field and the number of groups
that include a 3-visit night. In reading Figure 2 (left) it is important to keep in mind that the
two distributions are for different measures, and each field will generally fall in a different
bin for the two distributions. The condition that groups with a 3-visit night are in a subset



of all groups, requires that the former cumulative distribution (Figure 2 right) is always to
the left of, or smaller than, the latter. Figure 2 (right) does show that most groups have at
least one 3-visit night.
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Figure 2. (left) Histogram of the number of fields with different numbers of
qualifying Groups. All Groups (red), and Groups with at least one night having 3
visits (Green). (right) Cumulative distribution of the same.

The adopted Metrics for number of Groups is the Group count in Figure 2 (right) achieved
by at least half of the fields, separately for all Groups and for Groups with at least one night
of three visits.
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Figure 3. (left) Histogram of the number of fields against the number of lunations
that have at least one Group for all Groups (Red) and for Groups with at least one

Number of lunations that have a group

night with 3 visits (Green). (right) Cumulative distribution of the same.
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The adopted Metrics for number of lunations is the lunation count in Figure 3 (right)

achieved by at least half of the fields, separately for all Groups and for Groups with at least

one night of three visits.




Analysis Parameters

Tmin: 15 min
Tmax: 60 min
N ags: 14
Nnights: 3

Metric Summary

Simulation

Minimum number of Groups for 50% of fields
For all griz visits to all fields

Minimum number of Groups for 50% of fields
For all griz visits to all fields

With at least 3 visits on at least 1 night

Minimum number of Lunations for 50% of fields
For all griz visits to all fields

Minimum number of Lunations for 50% of fields
For all griz visits to all fields
With at least 3 visits on at least 1 night

Appendix: Algorithms

Visit Groups for Solar System Object Detection

79

30

28

* For every field, scan the visits and look for groupings that are suitable for moving

object detection.
* The approach:
— Make alist of all visits.

— Select only Nights that have at least one close Pair of visits (interval Tmin < t

< Tmax)

— For each such Night, note the number of additional visits during that Night
— Find Groups of Nights within a defined time window (Ndays) - each Night
may be “tested” in several possible groups, but may only count in one Group.

* Make histograms:

— The number of Optimum Groups for each field, overplotted with the number
of Groups for which at least one Night has three visits.
— The number of fields with Optimum Groups in each 30 day time interval,
overplotted with the same for which at least one Night had three visits.
*  Metrics - characterize each histogram (4 of them) with the 25, 50 and 75% points.

Parameters and Initial Values
* Fi- field numbers - initially all fields

* Wi - filters accepted - initially g, r, i, and z

* Nights consist of visits in the same filter
*  Groups may include Nights with different filters



Xi - required limiting magnitude in filter i
— Initially Xg=23.92, Xr = 23.5, Xi=24.72, Xz=24.72
* Based on Xr=23.5 and typical colors from Piironen et al, A&Asuppl
128,525 (1998); Ivezic et al, A] 124, 2943 (2002).
Tmin - minimum interval between visits in a Pair - initially 15 minutes
Tmax - maximum interval between visits in a Pair - initially 60 minutes
Ndays - Duration of a Group - initially 14 days
Nnghts - number of Nights required in a Group (ie Nights with Visit Pairs that
satisfy the requirements) - initially 3

Definition of Night Number

Compute Integer(expM]D-0.3) to compensate for the time difference between
Greenwich and Chile.

This gives a count of observing nights, defined to start after midday

The observing nights thus defined starts at noon or noon + 1 hour local time,
depending on savings time.

Algorithm 1

For each field Fi:
— Make a sequential list of all visits with any listed filter Wi, and limiting
magnitude better than Xi
* List contains:
— expM]D-1, filter
— Make a sequential list of all Nights with at least one visit Pair satisfying Tmin
< t < Tmax - all visits in a Night must be in the same filter
* List contains:
— expM]D-1, filter, NgtVisits, expM]D-2,..., expM]D-NgtVisits
— NgtVisits = number of visits during the Night, >= 2

Algorithm 2

— Search the list of Nights
*  ForNighti=1,2,....
— Count the number of Nights within a following interval =
Nmax days
— Ifthe number of Nights is < Nnghts, skip Nighti and advance
to Nighti+ 1
— Ifthe number is >= 3, add an entry to the Group list which
contains:
» expM]D-1, GrpVisits
»  GrpVisits is the total number of visits = sum of
NgtVisits in the Group
— Start the next Group at Night i + Ndays - that is, each Night
can only count in one Group. (This does not give the
optimum groups, which would require a more complex
search with additional criteria to score the value of different
Groups.)

Algorithm 3

Make histograms:



— The number of Groups for each field, overplotted with the number of Groups
for which at least one Night has three visits (the ratio GrpVisits/GrpNights >
2.00).
— The number of fields with at least one Group in each 30 day time interval,
overplotted with the same for which at least one Night has three visits (the
ratio GrpVisits/GrpNights > 2.00).
* Metrics - characterize each histogram (4 of them) with the 25, 50 and 75% points.
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While some science objectives require particular visit cadences, or benefit from non-
uniform visit distributions, others are best served by a uniform pattern of visits. This
metric group describes some of these.

Standard Deviation of time sampling

For each field and each filter, all visits are arranged in time order. Two measures of non-
uniformity are computed. One is the difference between the mean (or median) of all visit
times and the mid-point time of the survey. This measures the relative excess of early or
late visits. The second is the StDev of the visit times relative to the mean(or median) of the
times for that dataset (field and filter), or for the RMS about the midpoint of the survey.
Each field is represented by a single point in a StDev vs Difference plot. Figure 1 shows an
example.

StdDev (i filter) vs Difference of mean & midpoint of survey
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Figure 1a. The StDev of the visit time about the mean visit date, vs the difference between
the mean visit date and the survey midpoint, with each filed represented by a point. (Graph
file title: opsim3_61_i_stdev_ab_mean_vs_median_midpoint.png).



StdDev (i filter) vs Difference of median & midpoint of survey
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Figure 1b. The StDev of the visit time about the median visit date, vs the difference between
the median visit date and the survey midpoint, with each filed represented by a point.
(Graph file title: opsim3_61_i_stdev_diff medians_midpoint.png).
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Figure 1c. The RMS of the visit time about the mean visit date, vs the difference between the

mean visit date and the survey midpoint, with each filed represented by a point. (Graph file

title: opsim3 _61_i_stdev_midpoint_diff means_midpoint.png).

For a uniform sampling, the difference between mean or median and the midpoint would be
zero, and the standard deviation would be 1053.4. The metric adopted is the number of
fields which fall within the bounds +-400 in difference, and +-250 of 1053.4 in standard
deviation or RMS.

Zeljko Kolmogorov-Smirnov test

This metric computes a quantity F that measures departures from the uniform sampling
expectation, and is akin to the KS test - that is, it examines the difference between the actual
distribution and the desired distribution (uniform). It ranges from 0 (perfectly uniform) to
+-0.5 (all data taken on the first or last night). Figure 2 shows an example.
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Figure 2. The value of the F function for each field, for the g filter. (Graph file name:

opsim3_61_g_fvalue.png). The Field ID is an index which approximately, but not exactly,

tracks the LSST Field Number.

Multi-color Visits

For a transient of an anonymous target, there will initially be little or no information
available for characterization beyond the LSST data itself. The principle opportunity for
rapid characterization with LSST is in repeat visits. A repeat visit in the same filter offers
additional time variability information, while a repeat visit in another filter offers color
information. The former is covered with metrics of the Solar System group.

Figure 3a shows the distribution of inter-visit times for visit pairs in different filters, as a
simple total in each bin without regard to the field identity. The metrics associated to this
figure give the total number of fields for which the mean of the 10 (30, 100) shortest inter-
visit times is less than 1 hour or more than 100 hours, where for the former a large value is
good, and for the latter a small value is good.
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Figure 3a. The number of visit pairs with different filters vs the spacing in time between the
visits. The plot shows the total number of such pairs for all fields and for any 2 filters of the
ugrizy set. (Graph file name: opsim3_61_ugrizy_all_hour_diff.png)

A cumulative distribution for Figure 3a is shown in Figure 3b. A metric formed from this
view of the information is the cumulative total number of visits with time interval less than
1 hour and less than 10 hours.
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Figure 3b. The number of visit pairs with different filters vs the spacing in time between the
visits. The plot shows the total number of such pairs for all fields and for any 2 filters of the
ugrizy set. This is the cumulative version of Figure 3a. (Graph file name:
opsim3_61_ugrizy_all_hour_diff cum.png).

Uniformity of Sky Coverage
In order to optimize the photometric calibration, it is important to have a minimum amount

of high quality data for most contiguous fields, since gaps on the sky interfere with closing
the calibration by benefitting from field overlap and multiple paths.



For this metric, we look at the sky coverage for each filter after 1 year, 2 years and NYear
years. In order to be counted in this metric, a visit must be qualified - ie, obtained under
seeing, sky brightness and airmass satisfying specified requirements.

Figure 4a shows the number of qualifying visits in each field in the u filter during the first 2
years.

The metric is the number of fields for which at least 3 qualified visits have been obtained in
a filter within the specified period of time at the beginning of the survey.

Figure 4b shows an Aitoff plot for all filters for the first year of the survey.
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Figure 4a. The number of qualifying visits in the g and u filter obtained in each field during
the first 2 years of the survey. (Graph filenames: opsim3_61_g_skycoverage_0_2_years.png
and opsim3_61_u_skycoverage_0_2_years.png).
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Figure 4b. Projection plot on the sky showing the number of qualifying visits obtained in
each field during the first year of the survey. (Graph file name:
opsim3_61_ugrizy_skycoverage_aitoff_0_1_years.png).

Analysis Parameters

D: 400 days
SD 250 days
NYear 3 years
SEEmax 1.5 arcsec
SKYmax 0.0

Xmax 0.0

Nvis

Metric Summary

Simulation 3.61

StDev - Number of fields well distributed in time according to standard deviation or RMS
about midpoint, and difference between mean or median date and survey midpoint

Filter Median Mean
u 560 620

g 1367 1940
r 1180 1705
i 1426 1772



vA 795 1176
1105 1411

Kolmogorov-Smirnov test (number of fields satisfying criterion)
Filter Fields

u 2025
g 2744
r 2880
i 2859
z 3062
y 2636

Multi-color - visit pairs in any two different filters within a short interval
Number of fields for which the mean of the 10 shortest intervals between two filters

1S:

Less than 1 hour Greater than 100 hours
2570 208
Number of fields for which the mean of the 30 shortest intervals between two filters
is:
Less than 1 hour Greater than 100 hours
2175 308
Number of fields for which the mean of the 100 shortest intervals between two
filters is:
Less than 1 hour Greater than 100 hours
210 513

Cumulative Frequency
Cumulative number of visit pairs in different filters to all fields

Interval < 1 hour Interval < 10 hours
244494 296495

Uniformity of sky coverage
Number of fields with fewer than Nvis visits (ugrizy) after:
lyear 1362 844 875 713 275 576
2years974 513 402 450 158 572
NYear years 823 421 350 334 158 572
Number of main survey fields with fewer than Nvis visits (ugrizy) after:

lyear 703 703 250 344 187 1 4
2years389 389 21 19 42 0 0
NYear years 238 0 0 1 0 0

Appendix: Algorithms

StDev of temporal distribution
* For each field and filter, analyze the sequence of visit times.



Find the mean (median) visit times and difference from the time of the midpoint of
the survey. This measures displacement early or late in the survey.
Find the RMS of the visit dates about the mean (median). This is an indicator of the
compactness of the distribution.
Count the fields for which:

o -D < Difference < D, where D=400, and,

o (1053.4-SD) <StdDev < (1053.4 + SD), where SD = 250

KS uniformity metric - Zeljko’s description

First extract the starting and ending time of simulation, tmin and tmax. Then loop

over all fields and filters and for each combination extract the vector of observing

times, t_i, i=1,..,Nobs. Given t_i vector, then

make a cumulative distribution of t_i, normalized to 1 (i.e. divide the cumulative

counts by Nobs), call it c_i. Actually, I didn't use real t_i, but evaluated cumulative

counts on a regular grid from tmin to tmax, with a step of 14 days (it shouldn't make

much difference).

2) make a model distribution expected for the uniform sampling, m_i = (t_i-

tmin)/(tmax-tmin)(m_i is a straight line starting at 0 for tmin, and ending at 1 for

tmax)

3) then compute the following two quantities {1 = 1/Nobs * sum(|c_i-m_i|)Jwhere

the sum is over all data points, and || means absolute value, and similarly {2 =

1/Nobs * sum((c_i-m_i)/|c_i-m_i|)

f1 measures departures from the uniform sampling expectation, andis akin to KS

test. It ranges from 0 (perfect sampling) to 0.5 (all data taken on the first or last

night).

f2 simply measures whether the sampling is "front-loaded"(the first half of the

survey) with 0<f2<1, or "back-loaded" with -1 < f2 <0)

Then define FOM=f1*f2

o which varies from -0.5 to 0.5. It's amplitude is driven by f1 and signby f2. For

perfectly uniformly sampled data, FOM=0, for front-loaded FOM=0.5 and for
"oh my gosh the survey finishes tomorrow and we haven't observed this
field yet - let's do it tonight" we have FOM=-0.5.It has better properties than
for simply looking at the mean (or median)and standard deviation of the
observation times (for similar reasons that make KS such a powerful
statistical test).

KS uniformity metric - Implementation

o Apply to every field-filter vector of visits

o Tmin and Tmax are the times of first and last visits in the survey (same for
all fields). Define DT as Tmax - Tmin.

Nobs is the number of visits for the field-filter

Tn is the time of visit n for the field-filter

T1 is the time of the first visit

Tnobs is the time of the last visit

™M O O O O O

= (1/DT)*[

-(0.5*(T1 + Tmin) - Tmin)/DT))*(T1 - Tmin)
+SUM(n=1 to Nobs-1) [
((n/Nobs) - (0.5*(Tn + Tn+1) - Tmin)/DT) * (Tn+1 - Tn)



+(1 - (0.5*(TNobs + Tmax) - Tmin)/DT)*(Tmax - Tnobs) ]
]
Multi-color visits
o Forall fields

o Collect all visits in all filters in a time-ordered list (typically 2000 visits)

o For each visit, find the time intervals in hours until the next visit in a
different filter (now we have ~2000 numbers)
Sort the list of intervals into order, small to large
Find the mean of the smallest 10 (30, 100) entries
Plot the mean vs field number
For metrics, find the mean for all fields of the means for each field for
smallest 10 (30, 100)
o Create a single binned plot of the combined interval lists
o Create a cumulative plot (small to large values of time)

o For metrics, find the values at 1 hour and 10 hours.

O O O O

Uniformity of sky coverage
o Foryear1,years 1-2, and years 1-Nyear (initially Nyear = 3)
o For each field
o Count the number of visits in each filter (6 counts for each field) which
satisfy quality criteria
o seeing < SEEmax(filter) (initially SEEmax = 1.5)
o filtsky > SKYmax(filter) (initially SKYmax = a small number)
o xparency <= Xmax (initially Xmax = 0.0)
o For each field and each filter
o Determine which fields have at least Nvis qualifying visits (initially Nvis=3)
= Make an Aitoff plot
o Metrics
o For each field (if possible, separately for main survey and “other”)
* Count the fields with fewer than Nvis visits
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These metrics describe aspects of the observing cadence and timing of visits to fields, with
respect to the time scale of variability of transient and variable sources. The characteristics
described are the timing of visit pairs, the time scales of well-sampled sequences, the
number of sequences acquired suitable for study of supernovae, and the complete phase
coverage achieved for periodic variables.

Visit Pairs

Visit pairs can detect variation of a source with a characteristic time similar to the interval
between the pairs. Figure 1 shows the number of visit pairs to any field vs the time interval
between visits (dt). All filters are considered, but pairs must consist of visits in the same
filter. The behavior of the function for large intervals (log(dt) > 4) are not very sensitive to
the details of the survey. The average value of the bins between log(dt) = 0 and 2 is adopted
as a metric for visit pairs. Additional metrics are the numbers of visit pairs in any filter
(both visits in the same filter) in 12 hour bins from 12 to 72 hours.

log(Number of visit pairs) vs log dt
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Figure 1. The log(number of visit pairs) to fields per bin in log(dt), where dt is the time
between visits. (Graph file title: opsim3_61_logvisitpairs_logdt.png).

Sampled Sequences

In order to characterize a transient of arbitrary flux-time profile, it is naturally preferred to
have a sequence of consecutive measurements which are properly sampled (in the Shannon
sense) with respect to the characteristic time — which initially is of course not known. As a
surrogate for such an ideal time series, Figure 2 shows the log(number of sequences) vs the
longest interval between any pair of visits in the sequence, for several values of sequence
length (6, 8 and 10). All visits must be in the same filter. Overlapping sequences in the
same bin are rejected, but are counted if they fall in different bins.

log(Number of non-overlap Sequences) vs log gap
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Figure 2. The log(number of sequences) to fields per bin in log(gap), where gap is the
longest interval between any two visits in the sequence, for several values of the number of
visits in the sequence. The plot shows results for sequence lengths of 6, 8 and 10 visits
(red, green and blue respectively). (Graph file title:
opsim3_61_lognoofsequences_loggap.png).

Gaps in Long Time Series

For study of slowly and irregularly varying sources, it is desirable to have long time series
without large gaps. For r and i filters (separately) the time series of visits to each field was
examined to determine the maximum gap, and also the average of the 10 longest gaps
(assumed to represent the expected seasonal gaps). The number of fields with such gap
values is shown in Figure 3. The number of fields with an average seasonal gap less than
100 days is adopted as a metric for long time series.
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Figure 3. The number of fields which have time series with maximum (red) and
typical (green) gap lengths of Gap days.

Time Series for Supernova Studies

The LSST Science Book chapter on supernova studies with the main survey defines a precise
minimum requirement for time series required. The minimum number of visits required for
such a time series is 7, and the minimum number of filters is 2. The number of days on
which a supernova reaching maximum brightness in a field would be properly sampled by
visits before and after is an appropriate count. In Figure 4, the number of such supernova
“field-days” is shown for 7, 14, 21 and 28 total visits and at least 4 filters in the visit
sequence. The adopted metric is the total number of field-days for 14 visits in 4 filters (ie
the sum of the green histogram in Figure 4.).



Number of supernovae samples NSNCount(all) (filters>=4) vs Field 4
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Figure 4. The number of days for each field for which supernovae at max would have
good sampling, with at least 7, 14, 21 or 28 visits total during the specified interval
(red, green, blue, pink respectively) and at least one visit in each of 4 filters. The
peaks on the right are clumps associated with the deep drilling fields.

Sampling of Periodic Variables

This merit function is oriented toward strictly periodic variables, in which measurements
from different cycles can be combined according to phase to make a single composite
variability function. For each field, all visits are considered. All possible periods between
log(P) = -1 and 3.5, at increments of 0.01 in log(P), where P is in days. The visits are then
ordered by phase for each value of log(P) and the largest phase gap is noted.

Figure 5 shows the median largest phase gap for all fields for each period bin. The peaks
are of course associated with the expected poor sampling for 1.0 sidereal days and 1 year.
Since this effect is well known and expected, we adopt as a metric the median value over the
range log(P) = 1.1 to 2.4, thus representing the phase coverage for the majority of periods of
interest.



Median largest gap vs log (period)

T T T T | T T T T T T T T T | T T T T T T T

0.6 —
o L _
o 04 —
bt
(2]
()] = i
et
i L J
c
.© L J
©
()]
= 0.2+

1 1 L L l 1 A i
-1 0 1

log (period)

Figure 5. The median of the largest phase gap is shown for all fields for each value
of log(P), where P is period in days.

Summary of Transient and Variables Metrics

Simulation 3.61

Visit Pairs Metric 1075.21
Short interval mean value

Sampled Sequences Metric
Number of sequences with at least 8 visits

dt = 3 min - 12 hours 123
dt=1-70days 748
Long Sequences Metric (r, i) (424, 859)

Number of fields with no gaps > 100 days

Supernova Sequences Metric
Number of field-days with
useful sequences (14 visits, 4 filters) 157092
Number of field-days with
excellent sequences (28 visits, 6 filters) 8163



Periodic Variables Metric (all filters)
Median phase gap for log(P) = 1.1 to 2.4 0.0169

Appendix: Algorithms

Input
* Stephen Bailey on gap analysis - Jan 3, 2010 and Oct 1, 2010 email
* Andy Becker and Abi Saha on sampling of variables - March 9, 2010 email
e Abi Saha-Oct1, 2010 email
* Zeljko Ivezic on revisit interval - Mar 12, 2010 email
*  Chris Fassnacht - Jan 4, 2010email
e Phil Marshall - Dec 22, 2009; Jan 1, 2010 emails
e Neil Brandt - Dec 18, 2009 email
* LSST Science Book - page 384 on SN sampling

Long time Series Gap Analysis
¢ For each field, look at ri images only
— Make alist of gaps between visits
¢ Include an initial gap between the start of observations and the first
visit, and a final gap between the last visit and the end of
observations.
— Arrange the gaps in decreasing order
— Make a plot vs Field number of
¢ The largest gap
¢ The average of the 10 largest gaps
— Make a histogram of the number of fields vs largest gap and another vs the
average of the 10 largest gaps
¢ Compute the 25, 50 and 75% points of each histogram as metrics

Supernova Sampling
¢ Assume that SNe will occur in every field on every day.
¢ For each field and each day, determine whether or not the associated sampling
satisfies the requirements of LSST Science book page 384
— OnevisitatT<-5andone at T > +30
— Atleast 7 nights with visits (-20 < T < 60)
— No gap greater than 15 days in the range (-5 to 30)
— Multiple filters (Nfilt) needed in order to determine colors
¢ Count the number of field-days for which suitable observations are acquired, for
different numbers of Nfilt.
e Parameters
—  FirstNt - first night studied (initially = SurveyStart + 5)
— LastNt - last night studied (initially = SurveyEnd - 35)
Supernova Algorithm
* For each field, collect all visits in time order



(Nights are designated by sequential integers)
Test the data set for suitable coverage for a possible SNe with restframe max on
each night, Nt, in the range FirstNt to LastNt (to allow time for required preceding
and following visits)
Find which nights satisfy the SN requirements

— Atleast one visit at <=Nt- 5 and one at >= Nt+30

— Atleast 7 nights with visits in the range Nt-20 to Nt+60 (count the number

of visits, NSNcount

— No gap greater than 15 days in the range (Nt-5 to Nt+30)

Count the number of filters observed in the range Nt-5 to Nt+30, Nfilt
Prepare a histogram with the number of accepted qualifying nights, SNnights, for
each field, by field number, with separate curves overplotted for Nfilt =1, 2, 3, and 4
or more
Prepare a histogram of number of nights SNnights, summed over all fields, vs
number of visits NSNcount, with separate curves overplotted for 1, 2, 3, 4 or more
filters.

As metrics, find the 25, 50 and 75% points of the integrated probability of each
SNnights histogram.

Periodic Variable Algorithm

For each field, select all visits in the list FilterList and arrange them in time-order

— Loop through periods LogPmin to LogPmax by steps of DeltaLogP

— For each value of P, step through the list of visits and compute the phase of
the visit with respect to the first visit, and create a list of phases for this field
and this period

¢ Phase = mod(M]D - MJDO, P)/P

— Sort the list of phases from smallest to largest. Scan the list and find the
largest gap in phase.

— Create an array of largest gaps, with one entry for each period tested. (For
DeltaP = 0.01, this array will hold about 500 entries.) There will be such an
array of gap vs period for each field.

Average all the arrays of gap vs period to get one array of average gap vs period and
plot it.

Plot the largest gap for any period vs Field number.

Stop here.

Create a histogram for each Period Group, including data for all fields. Integrate from
small to large values. Characterize with the 25, 50 and 75%, and largest values at
each P.

Plot the 25, 50 and 75% and largest values vs logP

As metrics compute the median of the 50% and largest values.

Periodic Variable Parameters, Flags and Initial Values

FilterList - list of filters accepted for merit function, initial value = All Filters
LogPmin - log of the minimum period studied, P in days, initial value = -1
LogPmax - log of the maximum period studied, P in days, initial value = 3.5
DeltaLogP - step in log(P) to be used in exploring periods, initial value = 0.01
Period Groups (initially):

- 0.5-0.95 days

— 1.05-10days

— 10-100days

- 0.95-1.05years



— 1.2-5years

Visit Pairs Algorithm
¢ For each field, step through the visits.
e For each visit, find all future visits to that field in the same filter, note the time
difference (DT), and save the DT value.
¢ For each field, find the number of DT pairs in the time ranges DT1-DT2, DT3-DT4,
DT5-DT6, and plot these superimposed on a histogram vs field number (these
intervals are poorly covered by LSST).
¢ Prepare a histogram of the total number of visit pairs vs the time difference. For the
histogram use N vs log(DT), with DT in minutes. Prepare the histogram for log(DT)
in the range Logdtmin to Logdtmax, with bin size of DtBin.
e Parameters:
— Logdtmin = minimum DT in minutes (initially = 0)
— Logdtmax = maximum DT in minutes (initially = 5)
— DtBin = bin size in log(DT) (initially 0.1)
— Initial values of DT1-6: 12, 24, 36, 48, 60, 72 hours

Sampled Sequences Algorithm
¢ For each field, prepare a sequential list of visits.
¢ For each visit, find the interval GAP until the next visit to the same field in the same
filter.
¢ Find each successive visit and each previous visit to the same field in the same filter.
As long as the interval between successive visits and previous visits is no greater
than GAP, continue adding visits to the sequence. Stop adding visits at the first
previous interval > GAP and the first following visit interval > GAP.
¢ The start of the sequence is designated M]Dfirst and the end M]Dlast.
¢ Find the number of intervals spanned by the sequence, Nint = (M]Dlast -
M]Dfirst)/GAP.
e IfNint >= Nmin, then save the sequence. Nmin is the minimum number of
acceptable samples in a sequence.
¢ Save the following information:
— Field, filter, M]Dfirst, M]Dlast, GAP, Nint, Nvis, Nother
— Nuvis is the total number of visits to the field in the primary filter between
M]Dfirst and M]Dlast.
— Nother is the total number of visits to the field in all other filters between
M]Dfirst and M]Dlast.
e Sort the list of sequences by Nint from largest to smallest (longer sequences are
more valuable)
¢ Determine what bin of GAP the first (longest) sequence falls in. Then delete from
the list all subsequent sequences that:
— Arein the same bin of GAP, and;
— Have any visit in common with the first sequence.
e This avoids counting a sub-sequence twice in the merit function
¢ Repeat for all sequences from longest to shortest, deleting according to this rule.
¢ We now have a list of qualifying sequences for the field which satisfy the criteria,
ordered from longest to shortest. Each sequence has several parameters that
describe it.
¢ Repeat for all other fields.
— This algorithm may be slow — might want to try for a subset of fields first.



¢ In preparing the histograms (below) add together all qualifying sequences for all
filters and all fields.
¢ Plot a histogram of the number of sequences (all fields, all filters) for bins in
Log(GAP).
— Make the histograms vs log(GAP), with GAP in minutes. Prepare the
histogram for log(GAP) = LogGAPmin to LogGAPmax, with bin size of
GAPBIin.
— Parameters:
¢ Nmin = minimum sequence length in samples (initially = 10)
¢ LogGAPmin = minimum log(GAP) in minutes (initially = 0)
¢ LogGAPmax = maximum log(GAP) in minutes (initially = 5)
¢ GAPBIin = bin size in log(GAP) (initially 0.1)
¢ Plot the median values of Nint, Nvis, and Nother, computed for the sequences in
each bin, against Log(GAP)
Metrics are TBD after we see the results

For each field, consider each gap between adjacent visits as the possible largest gap in a
sequence in its filter. In this example, examine visit V(i) and V(i+1) as a candidate starting point for
a sequence. All visits below are in the same filter.

V1 (any filter)

Va
1Time interval > GAP

vo <———  MJDfirst

1Time intervals <= GAP

—> Vi
1Time interval=GAP < rial gap
Vi+1
Time intervals <= GAP
Vk
Time interval <= GAP
vm <« MJDlast

Time interval > GAP If (MJDlast — MJDfirst)/GAP is greater than
vn Nmin, then it is an accepted sequence.



