
The LSST Metrics Analysis Framework (MAF)

R. Lynne Jonesa, Peter Yoachima, Srinivasan Chandrasekharanb, Andrew J. Connollya, Kem
H. Cookc, Željko Ivezića, K. Simon Krughoffa, Catherine Petryd, Stephen T. Ridgwayb.

aUniversity of Washington, Physics-Astronomy Bldg., 3910 15th Ave NE, Seattle, WA, USA;
bNational Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, USA

cEureka Scientific, Inc., 220 Duxbury CT, San Ramon, CA, USA
dUniversity of Arizona, 933 N Cherry Ave, Tucson, AZ, USA

ABSTRACT

We describe the Metrics Analysis Framework (MAF), an open-source python framework developed to provide
a user-friendly, customizable, easily-extensible set of tools for analyzing data sets. MAF is part of the Large
Synoptic Survey Telescope (LSST) Simulations effort. Its initial goal is to provide a tool to evaluate LSST
Operations Simulation (OpSim) simulated surveys to help understand the effects of telescope scheduling on
survey performance, however MAF can be applied to a much wider range of datasets. The building blocks of
the framework are Metrics (algorithms to analyze a given quantity of data), Slicers (subdividing the overall
data set into smaller data slices as relevant for each Metric), and Database classes (to access the dataset and
read data into memory). We describe how these building blocks work together, and provide an example of using
MAF to evaluate different dithering strategies. We also outline how users can write their own custom Metrics

and use these within the framework.

Keywords: Large Synoptic Survey Telescope, LSST, Metrics Analysis Framework, MAF, Operations Simula-
tion, OpSim, simulation, metrics

1. INTRODUCTION

As LSST moves toward construction, significant effort is being invested in understanding the effect of telescope
scheduling on the overall performance of the survey. The LSST Operations Simulations group is working toward
this goal by producing simulated surveys created with a range of observing strategies. These simulated surveys
are created by the Operations Simulator (OpSim).1–3 Each survey includes a detailed model of the telescope
pointing and movement capability, weather conditions, scheduled and unscheduled downtime, and a scheduler
algorithm which can be programmed with different sets of requested observations. The output of each simulated
survey run is a simulated pointing history for LSST, consisting of approximately 2.5 million visits for a full
10-year simulation. LSST plans currently call for each visit to consist of two 15-second back-to-back exposures.
The OpSim output includes the sky coordinates and filter used for these visits, together with the observing
conditions (airmass, seeing, sky brightness, limiting magnitude, etc.) of each visit, along with records of the
telescope state over the 10-year simulation and information relevant to the internal state of the simulator itself.
To help evaluate these simulated survey outputs, we have built the LSST Metrics Analysis Framework (MAF).

In broad overview, MAF is an open-source python software framework that provides a user-friendly, easily-
extensible, easily-customizable set of tools to

• read the OpSim simulated survey data from a database,

• slice the data according to the values of single or multiple columns within the data or the spatial location
of the data points,

• apply various algorithms (metrics) to each data slice, saving the results,

Further author information: (Send correspondence to R.L. Jones)
R.L. Jones.: E-mail: ljones@astro.washington.edu, Telephone: 1-206-543-9487

• and visualize the metric results,

while also preserving metadata about the source of the data and how the data was sliced. For visualization,
MAF can automatically generate reasonable plot labels and titles, but the user maintains the ability to override
these defaults and provide custom labels, titles, axes ranges, etc. Additional utilities make it easy to add new
data columns ‘on the fly’ for run-time extension of existing database tables. More details on the overall design
are described in Section 2.

An example of analyzing an OpSim simulated survey using MAF is described in Section 3, including a brief
comparison of how a user can evaluate different potential dithering methods.

MAF is intended to be extensible, allowing users to easily write their own algorithms for metrics, which can
then be plugged into the framework and used in the same manner as any of the provided metrics. Users can also
write new data slicing classes if needed, as well as point the framework to any kind of database. Base classes
demonstrate the APIs for each of these aspects of the framework, and documentation (including tutorials) is
provided online at http://ls.st/ziz∗ . While the primary goal of MAF is to analyze the LSST OpSim outputs,
we have built the framework to be easily applicable to more general use-cases as well.

We anticipate that the most common extension of MAF will be users writing their own metric algorithms
(Metrics), specifically to address their science concerns. A demonstration of the Metric API with a view towards
the requirements when writing new Metrics is provided in Section 4.

All code for LSST MAF can be git cloned from, or browsed online at, the LSST Stash repository, http:
//ls.st/pxj.

2. FRAMEWORK DESIGN

The heart of the MAF framework are the Metrics and Slicers. These basic classes correspond to defining
“what algorithm is being calculated with the data” (the Metric) and “what subset of data is being evaluated”
(the Slicer). As some examples: if we want to analyze “the mean airmass of all visits”, the Slicer would simply
pass all visits to a Metric which calculates the mean of the airmass values; if we want to analyze “the mean
airmass as a function of RA/Dec”, the Slicer would identify visits which overlap a series of RA/Dec points
and pass each of those subsets to a Metric which calculates the mean of those airmass values. In these two
examples, the Slicers (defining the subset of data being evaluated at once) are different, but the Metric itself
(what calculation is being done) is the same. Some more examples: if we want to analyze “the mean single visit
limiting magnitude as a function of RA/Dec” as well as “the total number of visits as a function of RA/Dec”,
we would use the same Slicer but different Metrics. These examples emphasize a fundamental point about
the framework: Metrics and Slicers have been built to be modular and interchangeable.

These modules, and other modules of MAF, are described in this section.

2.1 The Metrics module

Metrics are simply algorithms to analyze a given quantity of data. MAF provides a set of Metrics that
include a number of very simple algorithms, as well as some more complex Metrics focused on analyzing various
aspects of the cadence of observations or the technical performance of an OpSim run. The simple Metrics

include MeanMetric, MinMetric, MaxMetric, MedianMetric, RmsMetric, RobustRmsMetric, FullRangeMetric,
BinaryMetric, PercentileMetric, FracAboveMetric, FracBelowMetric, SumMetric, and CountMetric. These
can be applied to any column in the data, making these Metrics themselves flexible and easily reusable pieces
of code. A few of the more complex metrics include the CoaddM5Metric to calculate the coadded depth of a
set of visits, ProperMotionMetric and ParallaxMetric to analyze the expected precision of proper motion and
parallax measurements for a given OpSim simulation, the UniformityMetric to analyze the difference between
a given distribution of visits and a uniform distribution (using a K-S test), and VisitGroupsMetric to analyze
how groups of visits are distributed. A full list of included Metrics is provided in the MAF documentation,
although we anticipate that users will wish to write new Metrics specific to their science.

∗Throughout the text, shortened URL have been used. Please see Appendix A for the full URL

http://ls.st/ziz
http://ls.st/pxj
http://ls.st/pxj

MeanMetric applied to
Airmass of dataSliceMeanMetric applied to

Airmass of dataSliceMeanMetric applied to
Airmass of dataSliceMeanMetric applied to

Airmass of dataSliceMeanMetric applied to
Airmass of dataSliceMeanMetric applied to

Airmass of dataSliceMeanMetric applied to
NormAirmass

Opsim
Run DB

Read by OpsimDatabase
(applying SQLconstraint)

Numpy
array of
visit
data

Numpy
masked array
of mean value
of Normalized
Airmass
across sky

Plots created by
HealpixSlicer

MeanMetric and
RmsMetric applied to
MetricValues

SkyMap,
Histogram and
Power Spectrum
plots

Summary Statistics

Normalized Airmass column
generated ‘on-the-fly’ by Utils

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Numpy array
of visits
matching
Healpix
RA/Dec grid
point

Sliced by HealpixSlicer

Input DB

Outputs

Iterator

Figure 1: An illustration of the flow through MAF and interaction of MAF objects. For this illustration, we have
chosen the use-case of calculating the mean value of the ‘normalized airmass’ across the sky. The normalized
airmass is the airmass of each visit divided by the minimum airmass that the field would achieve, if it was
observed on the meridian. The normalized airmass is not one of the columns provided by the OpSim database,
so we calculate this for each visit using the MAF utility to add columns ‘on the fly’ and merge it into the numpy
array describing the properties of each visit. Because we want to calculate the mean value of the normalized
airmass at each RA/Dec value across the sky, we use a HealpixSlicer to determine the visits which overlap
each Healpixel RA/Dec grid point - these are the ‘data slices’ passed to the MeanMetric. The MeanMetric is
configured to operate on the ‘normalized airmass’ column, and returns the mean value of this column in each
data slice, as the slicer iterates through all data slices. The values at each Healpixel are combined to generate
the mean values of the normalized airmass across the sky. This metric data is saved to disk and used to generate
visualizations of the metric data by the HealpixSlicer: a sky map, a histogram and a power spectrum plot
(the types of visualizations are slicer-dependent). Summary statistics, such as the mean of all metric data values
across the sky and the RMS of these values, can also be calculated.

2.2 The Slicers module

The Slicers subdivide the larger OpSim output data into well-defined subsamples, such as ‘all visits’, ‘all visits
overlapping a particular Healpixel†, RA/Dec grid point’, ‘all visits to a particular OpSim FieldID’, or ‘all visits
with a particular data value within a given interval (of airmass, seeing, night, or any other column in the data)’.
We can iterate through all of these subdivisions using methods defined in the Slicer, thus iterating through
each Healpixel grid point or each OpSimFieldID or each interval. The Slicer defines what data is passed to a
Metric.

MAF provides a set of Slicers that include:

• UniSlicer: returns a single data slice, containing all visits in the input data. This could also be thought
of as the identity operator for slicing.

• OneDSlicer: returns slices of data where the value of a user-specified column is within a given interval
(and iterates through a series of intervals). The user can specify the intervals defining each slice directly,
specify the overall number of intervals, specify the size of each interval, or let the Slicer choose the number
of intervals using the Freedman-Diaconis rule. This Slicer, when combined with a CountMetric, acts as
a histogram and the intervals are defined in the same manner as numpy’s histogram function.

• NDSlicer: returns data slices where the values of multiple user-specified columns are within given N-
dimensional interval (and iterates through a series of intervals). This is similar to the OneDSlicer, but in
N-dimensions.

• OpSimFieldSlicer: returns data slices where the FieldID matches a specified FieldID (and iterates through
a set of FieldIDs). This Slicer is most useful for technical metrics involving the performance of the OpSim
simulator itself.

• HealpixSlicer: returns data slices where the RA/Dec of the visit overlaps (based on a user-defined radius)
the RA/Dec of the HEALpix grid point (and iterates through all Healpixels at a user-defined resolution
level). This Slicer allows calculation of metrics with resolution of field overlaps. The HealpixSlicer

uses the HEALpix tesselation of a sphere,4 making it possible for the user to set a spatial resolution and
rapidly compute angular power spectra.

Each Slicer provides methods to iterate through all slices and the metadata about each slice (i.e., the ‘slicePoint’
definition). For example, the slicePoints for the HealpixSlicer are the underlying healpixels, and the slicePoint
metadata then includes the pixel ID and the RA and Dec of each healpixel. Each Slicer therefore also provides
methods to visualize the metric values generated by iterating through the Slicer and applying a Metric at each
slice. The OneDSlicer provides methods to plot the one-dimensionally sliced metric values and the NDSlicer

provides methods to plot the N-dimensional metric values along either one or two user-defined axes. The
OpSimFieldSlicer and HealpixSlicer provide methods to generate sky maps of the metric values as well as
histograms of the resulting metric values; the HealpixSlicer also provides a method to plot the power spectrum
of the metric values.

Further under the hood, in order to do the data slicing efficiently, each Slicer also indexes the visit data
according to the slice definitions. The best example of this is with the HealpixSlicer. In order to efficiently
find the visits which overlap a particular Healpixel, the Slicer first builds a kd-tree on the visit RA and Dec
values. Then for each Healpixel, it searches the kd-tree for visits within a specified radius (the radius of the
LSST field of view) of the Healpixel RA and Dec value.

Although the provided Slicers cover a wide phase-space of potential data slicing, it is also easy for users to
write new Slicers to create custom subdivisions of the input data or to create new visualizations of the metric
values.

†Healpixels refer to the HEALpix (Hierarchical Equal Area isoLatitude Pixelisation) tessselation of the sphere4

2.3 The SliceMetric module

To couple together Slicers and Metrics, we provide the SliceMetric class. This class provides methods to take
a single Slicer object and multiple Metric objects and then iterate through the Slicer, applying the multiple
Metrics at each slicePoint. It allocates and saves the metric values as numpy masked arrays and handles masking
the metric values when there is either no data at a particular slicePoint or the Metric returns a flagged ‘bad
value’. The SliceMetric also provides convenience methods to plot all metric values, save all metric values to
disk and read previously saved metric values back from disk. The SliceMetric also keeps track of the relevant
metadata (e.g., which simulation is being analyzed) for each Metric + Slicer combination and adds this to the
plot titles and saved files. This class is provided as a convenience for users interacting with MAF from within a
python shell or from their own custom python scripts; it is also used by the MAF Driver interface, which allows
users to run MAF from relatively simple configuration files.

2.4 The Database module

Data comes into MAF from a database via the Database classes. The real workhorse here is the Table class,
which provides the tools needed to connect to a database table, execute queries on that table, and return the
results of the queries in a numpy recarray. The Table class depends on database tools developed for another
LSST software package used to generate simulated catalogs. Underlying these tools is SQLAlchemy,5 thus MAF’s
Table class is agnostic about the specific type of SQL used in the database and can connect to many different
types of databases.

On top of the Table class, the OpSim-specific OpsimDatabase class carries more information about the full
set of database tables in the sqlite databases generated by OpSim. OpsimDatabase includes methods to connect
to the various tables within the sqlite database file, fetch and parse the configuration tables used to run a
particular simulated survey, retrieve the number of years of operations the simulation was intended to represent,
get and identify various proposal IDs, and most importantly: fetch the records representing each visit and its
observing conditions, allowing the user to specify which columns to retrieve from the database and to apply a
SQL constraint to the selection of visits.

2.5 Framework Data Flow

The basic flow through the framework to evaluate an OpSim simulated survey is then:

• Connect to an OpSim sqlite database file (provided by the OpSim team) using an OpsimDatabase object.

• Instantiate the Metrics objects to be used to evaluate the simulated survey. This sets up a registry
containing the columns needed from the OpSim outputs (such as airmass and seeing, etc.).

• Instantiate the Slicer to be used with these Metrics, which may add some additional columns needed
from the OpSim output (such as RA and Dec).

• Cross-reference the necessary columns for the Slicer and Metrics against a MAF utility which provides
definitions for the source of each column. Columns coming directly from the OpSim outputs are indicated
as coming from the database. However this utility also provides a way to generate new columns ‘on the fly’
by calculating values for each visit using methods (called Stackers) which can be added to the framework.

• Retrieve the necessary data columns from the OpSim output using OpsimDatabase, limited by a user-
defined SQL constraint if desired. This data is then stored as a numpy recarray in memory.

• Use the methods defined by the Stackers to generate the on the fly columns and add into the numpy
recarray.

• Set up the Slicer to be ready for slicing, indexing the necessary information from the visit data.

• Instantiate a SliceMetric object to make it easy to couple the Metrics and Slicer, and add the Metrics

and Slicer to the SliceMetric.

• Use the SliceMetric to iterate over the Slicer and apply all the Metrics at each slice, calculating all of
the desired metric values.

• Use the SliceMetric to save the metric values to disk, along with relevant metadata.

• Use the SliceMetric to generate all plots for all metric value and save these to disk.

• Calculate any user-specified summary statistics: these are just Metrics which are applied to the metric
values instead of the visit data. A typical usage would be to calculate the mean and RMS of metric values
calculated at all points over the sky using a HealpixSlicer.

This can then be repeated for different Slicers and different SQL constraints as desired. An illustration is
provided in Figure 1.

There is some subtlety to determining the boundary between the Slicer and the SQL constraint. As a
simplified example, if we want to calculate the number of visits for each year of the survey, we could apply a
series of SQL constraints limiting the retrieval of data from the database to visits falling within each year, and
then use a UniSlicer with a CountMetric to simply count how many visits were in each year. The results would
all be single, separate numbers. We could also apply no SQL constraint, select visits from all years, then use a
OneDSlicer set up with slice sizes of a year, together with a CountMetric. The result would then be the same
set of values, but linked by the Slicer and easily plotted as a function of year. The Slicer and a series of SQL
constraints act similarly, but the Slicer allows us to keep better track of the relationship between each slice.
Thus, in general, when using MAF, use SQL constraints for large subdivisions (e.g., observations in a single
filter), especially if only a single subsection of the visits is desired, and use Slicers if a series of subdivisions
(and a sense of their relationship) is desired (e.g., how a Metric value changes over space or time).

2.6 The Driver module

The MAF Driver provides a simple way to go through this entire flow automatically. When using the Driver,
the user specifies the database address, the output directory, the desired Metrics, the desired Slicers to go
with these sets of Metrics, and the desired SQL constraints to apply. The Driver uses these specifications to
run through the steps listed above, looping through the unique SQL constraints and different Slicers. It also
saves the configuration used to run MAF, to make it easy to recreate the analysis.

The MAF Driver takes as input a single configuration file, which is itself a python script, making it easy
to configure and combine large numbers of Metrics, Slicers, and SQL constraints. Thus, MAF can generate
detailed reports on each OpSim simulated survey.

3. MAF APPLICATIONS

This section demonstrates the application of MAF to a particular OpSim run, ‘Opsim3.61’. While we can only
show a few Metrics and Slicers here, we have attempted to illustrate the power and range of MAF in these
choices, as well as the flexibility in the configuration scripts for the Driver.

3.1 A simple analysis using the UniSlicer

We start with a very simple analysis: calculating the mean and RMS of the seeing distribution for visits which
were taken in r band, and then also in i band. To find the mean seeing for all visits in r band, we use a SQL
constraint to select r bands from the OpSim output database, then use a UniSlicer to sub-select all visits in
the dataSlice, and then use a MeanMetric applied to the ‘seeing’ column. To find the RMS of the seeing in r
band, it is similar but using an RmsMetric instead. In order to calculate the equivalent values in i band, we do
the same but use a SQL constraint where we select i band visits instead. Note that MAF would do two queries
of the database (not four), one for visits in r band and one for visits in i band.

With this translation into MAF Metrics and Slicers, it is then fairly simple to write a configuration file
for the Driver to generate this output. We can loop over the two filters desired, and configure the Metrics

(MeanMetric and RmsMetric), configure the Slicer (linking the Metrics to the Slicer), and send this infor-
mation back from our configuration script into the Driver script itself. A full example driver configuration file

configList = []
filters = [’r’, ’i’]
for f in filters:

Configure a metric that w i l l calculate the mean of the seeing
Adding the ’ IdentityMetric ’ to the summaryStats means i t w i l l print the output to a f i l e .
m1 = configureMetric(’MeanMetric ’, params =[’seeing ’], summaryStats ={’IdentityMetric ’:{}})
Configure a metric that w i l l calculate the rms of the seeing
m2 = configureMetric(’RmsMetric ’, params =[’seeing ’], summaryStats ={’IdentityMetric ’:{}})
Combine these metrics with the UniSlicer and a SQL constraint based on the f i l t e r , so
that we wi l l now calculate the mean and rms of the seeing for a l l r band v i s i t s
(and then the mean and rms of the seeing for a l l i band v i s i t s) .
slicer = configureSlicer(’UniSlicer ’, metricDict=makeDict(m1, m2),

constraints =[’filter = "%s"’ %(f)])
Add this configured s l i c e r (carrying the metric information and the sq l constraint) into a l i s t .
configList.append(slicer)

Figure 2: These are the only lines needed in a driver configuration file to calculate the mean and rms of the
seeing in all visits in r and i, respectively. One for each Metric, one for the Slicer, and then a few others to loop
over the different filters. Comments in-line above provide additional description.

that recreates all the plots in this section is available at http://ls.st/mxl. However, the relevant lines that set
up and configure these Metrics and Slicer (including looping over the two filters) are shown in Figure 2. We
find that for Opsim3.61 the results are:

• Mean seeing in r band: 0.81′′, RMS of seeing in r band: 0.21′′

• Mean seeing in i band: 0.79′′, RMS of seeing in i band: 0.20′′.

Of course, this analysis is very simple and could easily be done in any number of ways, including using functions
defined in the database itself. The interesting aspect is that it is very easy to write new Metrics (see Section 4)
and that the database was only scanned twice to get the data to calculate these numbers.

3.2 Analysis including visualization: OneDSlicer and HealpixSlicer

Moving to a slightly more complicated analysis that includes visualization, we generate and plot a histogram
of the airmass values in r and i bands visits. Translating this to MAF Slicers and Metrics, we would again
use a SQL constraint to first select visits in r and i band. Then we would use a OneDSlicer to slice on the
values of the airmass column (in each band), together with a CountMetric to return the number of visits in each
slice, to generate the histograms. It is worth noting that since these SQL constraints also match the ones in the
UniSlicer example above (e.g., ‘where filter = “r”’ and ‘where filter = “i”’), we will still only do two queries of
the database when combining this analysis with the UniSlicer calculations. That is, for each SQL constraint
in the driver configuration file, the Driver evaluates what columns are needed for all the Slicers and Metrics

being run with the same constraint, and retrieves all of these columns in one query. The Driver has hooks when
configuring each Metric to allow the user to customize each plot: set the title, x and y labels, x and y ranges,
and colors. It also provides the option to combine the outputs from multiple OneDSlicers (such as we have
done here) into one plot. The resulting combined plot is shown in Figure 3, and the additional configuration
parameters for the driver configuration file are shown in Figure 4.

Next, let us evaluate the number of visits and the coadded limiting magnitude over the sky, this time in g
band, and do this at a resolution sufficient to resolve overlaps between LSST fields of view. At the time of this
publication, the LSST OpSim uses fixed field pointings‡, returning to the same RA and Dec for each field every
time – however, these fields do overlap slightly, on the order of 100 arcminutes. By using the HealpixSlicer,
with a value of NSIDE of at least 64, we can begin to resolve the field overlaps. Coupling this with a CountMetric,
we can evaluate the number of visits to each RA and Dec point in the HEALpix grid. We can also calculate the

‡In the future, the OpSim will likely adopt a dithering pattern of some kind, which will be based on evaluations of
various dither patterns by the LSST community.

http://ls.st/mxl

1.0 1.5 2.0 2.5 3.0
Airmass

0

5000

10000

15000

20000

25000

C
o
u
n
t

 opsim3.61 Airmass

r band

i band

Figure 3: Example of using a OneDSlicer together with a CountMetric to generate a histogram of the airmass
distribution in r and i bands, and merging the result using the driver configuration file.

configList = []
filters = (’g’, ’r’)
for f in filters:

Configure a metric + a OneDSlicer so that we can count how many v i s i t s
are within in each interval of the seeing value in the OneDSlicer .
m1 = configureMetric(’CountMetric ’, params =[’Airmass ’], kwargs ={’metricName ’:’Airmass ’},

Set up a additional histogram so that the outputs of these count metrics in each
f i l t e r get combined into a sing le plot (with both r and i band) .
histMerge = {’histNum ’:1, ’legendloc ’:’upper right’, ’label ’:’%s band’ %(f),

’xlabel ’:’Airmass ’, ’color’:colors[f]})
Set up the OneDSlicer , including set t ing the interval s ize for s l i c ing .
slicer = configureSlicer(’OneDSlicer ’, kwargs ={’sliceColName ’:’Airmass ’, ’slicesize ’:0.02} ,

metricDict=makeDict(m1), constraints =[’filter = "%s"’ %(f)])
configList.append(slicer)

Figure 4: These configuration lines let us loop over several filters, and create a histogram of the airmass distri-
bution in each filter. The ‘histMerge’ line tells the driver to merge the histograms into a single plot, which is
shown in Figure 3.

coadded depth at each point in the HEALpix grid using the provided Coaddm5Metric, which uses the individual
visit 5-sigma limiting magnitude output by OpSim and combines them according to

Coadd m5 = 1.25 log10

∑
(100.8m5i). (1)

The resulting metric values will be two arrays, containing the number of visits and the coadded m5 values
evaluated at the RA/Dec point defining each healpixel. The HealpixSlicer then provides the following methods
to visualize these metric values: a SkyMap (see Figures 5a and 5b for examples), a Histogram, where the area of
each healpixel is used to convert the histogram counts into area on the sky (see Figures 5c and 5d), and a Power
Spectrum (see Figures 5e and 5f). The HealpixSlicer uses healpy’s anafast function to calculate the angular
power spectrum and plots the result, optionally removing the spherical harmonic dipole.

3.3 Adding summary statistics

We can also calculate ‘summary statistics’ on any calculated metric value. Summary statistics are intended to
take metric values calculated across the sky or over many intervals and extract a scalar value as a ‘summary’.
Any Metric can be used to calculate a summary statistic, as long as it only requires a single column of data
(the metric values). We previously calculated the number of visits and coadded depth at each HEALpix in g
band. In order to more easily compare many different OpSim simulated surveys, we would want to know the
mean and rms of the distribution of these values across the sky. We can easily do that via the Driver, by
simply adding these lines to the Metric configuration, as shown in Figure 6. For this simulation, the mean of
the g band number of visits was 93.8 and the mean of the coadded depth was 26.9, while the RobustRMS (RMS
approximated by interquartile range to reject outliers) was 20.8 visits and 0.21 mags, respectively.

opsim3.61 g No dithering: Nvisits g band

60 80 100 120 140 160 180 200 220
Number of Visits

(a)

opsim3.61 g No dithering: Coadded m5 g band

-1.2 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Co-add (m5 - 27.4)

(b)

40 60 80 100 120 140 160 180 200 220
Number of Visits

0.000

0.420

0.839

1.259

1.679

2.098

2.518

A
re

a
 (

1
0
0
0
s

o
f

sq
u
a
re

 d
e
g
re

e
s)

opsim3.61 g No dithering: Nvisits g band

(c)

0 50 100 150 200 250 300 350 400
l

102

103

104

105

l(
l+

1)
C
l

opsim3.61 g No dithering: Nvisits g band

(d)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
Co-add (m5 - 27.4)

0.000

0.420

0.839

1.259

1.679

2.098

2.518

A
re

a
 (

1
0
0
0
s

o
f

sq
u
a
re

 d
e
g
re

e
s)

opsim3.61 g No dithering: Coadded m5 g band

(e)

0 50 100 150 200 250 300 350 400
l

10-2

10-1

100

101

l(
l+

1)
C
l

opsim3.61 g No dithering: Coadded m5 g band

(f)

Figure 5: Example of the plots resulting from using the HealpixSlicer to calculate the number of visits per
healpixel and the coadded limiting magnitude per healpixel. Panels 5a and 5b show the skymap of the number of
visits and coadded depth (respectively) in g band. Panels 5c and 5d show the additional visualizations available
from the HealpixSlicer: a histogram of the area corresponding to a particular number of visits, and the angular
power spectrum of the number of visits across the sky. Panels 5e and 5f show these additional plots for the
coadded limiting magnitude Metric.

Configure Coadded depth metric , specifying m5 column
and ’metricName ’ (which is placed at top of p lots)
m2 = makeMetricConfig(’Coaddm5Metric ’, kwargs ={’m5col ’:’5sigma_modified ’,

’metricName ’:’Coadded m5 g band’},
Specify some options for p lot t ing − zp removes a zeropoint from plotted values
plotDict ={’zp’:mag_zpoint ,

’plotMin ’:-1.5, ’plotMax ’:0.75 ,
’units’:’Co -add (m5 - % .1f)’%mag_zpoint},

Calculate summary s t a t i s t i c s ”mean” and ”rms”
summaryStats ={’MeanMetric ’:{}, ’RobustRms ’:{}})

Figure 6: Example of configuring a Metric where specific plotting options are desired (in particular, here a
zeropoint is subtracted from all metric values before plotting; a normalization value is also supported), and a
mean and robust rms summary statistics are specified.

3.4 Evaluating dithering strategies: Adding columns on the fly

Thus far we have demonstrated how to evaluate properties of all visits (or a subset selected by a SQL constraint)
using the UniSlicer, how to evaluate properties of visits defined by a series of intervals using the OneDSlicer, and
how to evaluate properties of visits at all points across the sky (resolving field overlaps) using the HealpixSlicer,
as well as how to summarize the results of these evaluations into a single scalar number using summary statistics.
We showed how this can be done simply using the MAF Driver. Next, let’s consider a more complicated analysis
that includes the MAF utility to generate data columns ‘on the fly’ in order to evaluate some dithering strategies.

As mentioned above, the existing OpSim simulated surveys use a fixed tesselation of the sky when scheduling
visits. In the current OpSim simulated survey outputs, the ‘fieldRA’ and ‘fieldDec’ columns refer to these fixed
field centers. The OpSim database outputs also provide an example of a dithering strategy, referred to as
‘hexdither’. The hexdither strategy offsets all the original fieldRA and fieldDec values in a night by a consistent
amount in RA and Dec; the size of the offset is defined by a series of vertices, packed in a triangular pattern
into a hexagon inscribed in LSST field of view. The resulting RA and Dec values are recorded in the ‘hexdithra’
and ‘hexdithdec’ columns in the OpSim outputs. Figure 7 illustrates the pattern of the hexdither vertices within
the LSST field of view; when all 217 vertices have been visited, the pattern repeats again from the beginning.
Evaluating other potential dithering strategies is straightforward with MAF.

When using the HealpixSlicer, each data slice consists of visits overlapping the HEALpix RA/Dec point.
Determining the relevant visits is based on the visit ‘fieldRA’ and ‘fieldDec’ by default; however, the HealpixSlicer
can also be configured to use other columns – such as the ‘hexdithra’ and ‘hexdithdec’ columns. Thus, it is ex-
tremely easy to run a set of Metrics on the original, non-dithered field pointings and then run the same set of
Metrics using a HealpixSlicer configured to use the hexdithered pointings. The same is true of any RA/Dec-
like columns which are added straight into the OpSim database file. However, MAF also provides users the
capability of adding new columns to the OpSim visit data after the data has been queried from the database.
We can use this to evaluate dithering strategies without altering the OpSim database, instead simply writing
a small amount of additional python code – a new MAF Stacker class. An example Stacker written to add
a random RA and Dec dither to each pointing is shown in Figure 8. The framework then handles identifying
which data columns come from Stackers and generating the required data at runtime. Using these new columns
is simple and in the driver configuration file there is no differentiation between columns retrieved directly from
the database or columns generated by Stackers – the name of the column desired for ‘spatialkey1’ and ‘spa-
tialkey2’ is simply entered into the configureSlicer kwargs in the driver config. This can be seen in the full driver
configuration file at http://ls.st/mxl.

Previously we evaluated the number of visits and coadded depth in g band, using a HealpixSlicer. We
can now repeat this evaluation, but apply each of these different dithering strategies as well. The results are
shown in Figure 9. As can be seen, the peaks in the number of visits and coadded depth due to field overlaps are
dramatically smoothed by both the hexdither and random dither strategies. We can also generate histograms
showing the area achieving a given number of visits and the area achieving a given coadded depth (see Panels 9g
and 9h), which show that the double peaks in coadded depth corresponding to field centers vs. field overlaps
are smoothed into a single peak. Similarly, we can create plots to compare the power spectra; Panel 9i shows
the dramatic difference that dithering makes. In the non-dithered case, the peaks in the power spectra of the
coadded depth can print through to galaxy number counts, causing problems for large scale structure cosmological
analysis.6

To continue this evaluation of dithering strategies a little further, let us add a few additional Metrics. While
there are endless possibilities, for reasons of space here we will consider only the ProperMotion Metric and the
QuickRevisit Metric. The ProperMotionMetric calculates the expected final precision in the proper motion
measurement at a given RA/Dec, based on the astrometric uncertainties in each observation (estimated from
the user-specified star’s magnitude plus the 5-sigma limiting magnitude of each visit, including an error floor)
and the times of the observations (visits spread further apart in time will have a lower error in the proper
motion), and assuming no parallax. The QuickRevisitMetric simply counts the number of nights that have
more than a user-defined number of visits, a relevant statistic for studies of variables and transients with short
timescales and to solar system object detection (although it is definitely not a comprehensive evaluation). The

http://ls.st/mxl

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

O
ffs

et
 in

 D
ec

 (d
eg

)

Offset in RA (deg)

Figure 7: The hexdither dithering strategy offsets the fixed OpSim field centers by a given amount each night.
The offset corresponds to the vertexes of a triangular tesselation of the hexagon inscribed in the LSST field of
view. The solid line shows the progression through the vertices by night, from the lower left to the upper right.
The offsets repeat after the entire pattern is completed.

class RandomDitherStacker(BaseStacker):
”””Randomly dither the RA and Dec pointings up to maxDither degrees from center . ”””
def __init__(self , raCol=’fieldRA ’, decCol=’fieldDec ’, maxDither =1.8, randomSeed=None):

Instantiate the RandomDither object and set internal
variables.

self.raCol = raCol
self.decCol = decCol
self.maxDither = maxDither * np.pi / 180.0
self.randomSeed = randomSeed
se l f . units used for plot labe l s .
self.units = ’rad’
Values required for framework operation : th is spec i f i e s the

names of the new columns.
self.colsAdded = [’randomRADither ’, ’randomDecDither ’]
Values required for framework operation : th is spec i f i e s the

data columns required from the database.
self.colsReq = [self.raCol , self.decCol]

def run(self , simData):
Generate random numbers for dither , using defined seed value

i f desired.
i f self.randomSeed i s not None:

np.random.seed(self.randomSeed)
dithersRA = np.random.rand(len(simData[self.raCol]))
dithersDec = np.random.rand(len(simData[self.decCol]))
np.random. rand returns numbers in [0 , 1) interval .
Scale to desired +/− maxDither range .
dithersRA = dithersRA*np.cos(simData[self.decCol]) *2.0* self.maxDither - self.maxDither
dithersDec = dithersDec *2.0* self.maxDither - self.maxDither
Add to RA and wrap back into expected range .
randomRADither = simData[self.raCol] + dithersRA
randomRADither = randomRADither % (2.0*np.pi)
Add to Dec and wrap back into expected range .
randomDecDither = simData[self.decCol] + dithersDec
randomDecDither = np.where(randomDecDither < -np.pi/2.0, -1.*(np.pi+randomDecDither), randomDecDither

)
randomDecDither = np.where(randomDecDither > np.pi/2.0, (np.pi -randomDecDither), randomDecDither)
self.stackerCols = np.core.records.fromarrays ([randomRADither , randomDecDither],

names=[’randomRADither ’, ’randomDecDither ’])
Add the new columns into the opsim simulated survey data .
simData = self._opsimStack(simData)

return simData

Figure 8: Example Stacker written to add a random RA and Dec dither to each visit pointing. The MAF
Driver uses these Stacker classes to generate the additional columns at runtime, if the new columns are used
in the driver configuration script. A HealpixSlicer can be easily configured to use these new dithering columns
generated on the fly within MAF by just referring to their names in the driver configuration file.

opsim3.61 g No dithering: Nvisits g band

60 80 100 120 140 160 180 200 220
Number of Visits

(a)

opsim3.61 g Hex dithering: Nvisits g band

60 80 100 120 140 160 180 200 220
Number of Visits

(b)

opsim3.61 g Random dithering: Nvisits g band

60 80 100 120 140 160 180 200 220
Number of Visits

(c)

opsim3.61 g No dithering: Coadded m5 g band

-1.2 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Co-add (m5 - 27.4)

(d)

opsim3.61 g Hex dithering: Coadded m5 g band

-1.2 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Co-add (m5 - 27.4)

(e)

opsim3.61 g Random dithering: Coadded m5 g band

-1.2 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Co-add (m5 - 27.4)

(f)

40 60 80 100 120 140 160 180 200 220
Nvisits g band

0.000

0.210

0.420

0.629

0.839

1.049

1.259

1.469

A
re

a
 (

1
0

0
0

s
o
f

sq
u
a
re

 d
e
g
re

e
s)

 opsim3.61 Nvisits g band

 No dithering

 Random dithering

 Hex dithering

(g)

24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5
Coadded m5 g band

0.000

0.420

0.839

1.259

1.679

2.098

2.518

A
re

a
 (

1
0

0
0

s
o
f

sq
u
a
re

 d
e
g
re

e
s)

 opsim3.61 Coadded m5 g band

 No dithering

 Random dithering

 Hex dithering

(h)

0 50 100 150 200 250 300 350 400
l

10-2

10-1

100

101

l(
l+

1
)C

l

 opsim3.61 Coadded m5 g band

 No dithering

 Random dithering

 Hex dithering

(i)

Figure 9: Evaluating the number of visits and coadded limiting magnitude in g band, in the case of no dithering
(Panels 9a and 9d), hex dithering (Panels 9b and 9e) and random dithering (Panels 9c and 9f) applied to the
OpSim FieldRA and FieldDec values. In the no dither and hex dither case, the relevant RA/Dec columns
are provided by the OpSim database; the random dither RA/Dec columns were generated on the fly using a
Stacker. Panels 9g, 9h and 9i show the histogram and power spectrum plots created from these metric values.
The areas with fewer visits (in the plane of the Milky Way, near the south celestial pole, and north of ≈ 10◦)
are areas outside the main footprint of LSST and are observed with a different set of requirements, including
fewer visits. The six dark red circular areas visible in the number of visits and coadded depth plots represent the
deep drilling fields, and are again observed with a different set of requirements than the main survey. Examining
panels 9i, we see that dithering is extremely important for smoothing the peaks in the power spectrum of the
coadded depth, which can print through to cosmological analysis such as galaxy clustering. It is also important
for the coadded depth; although the mean value of the coadded limiting magnitude does not change significantly
(26.98/26.99/26.98 in no dither/hex dither/random dither, respectively) the median does increase from 27.13
without dithering to 27.23 in both dithering options. (See Table 1).

QuickRevisitMetric is just intended to be a simple way to start looking at the effect of dithering on short time-
scale revisits (as this dithering can affect the field overlap region, which can act as a source for significant numbers
of quick revisits). We ran the ProperMotionMetric with stars at 20th and 24th magnitude (to evaluate high and
low SNR regimes), and looked for nights with more than 10 visits with the QuickRevisitMetric. Figure 10 shows
the results with each of the different dithering strategies – no dithering, hex dithering, and random dithering. At
20th magnitude, the ProperMotionMetric shows very little difference between any of these observing strategies,
but once we reach 24th magnitude, it is apparent that dithering smoothes the accuracy of the proper motion
measurements across the sky in a similar fashion to how dithering smoothed the number of visits and coadded
depth in g band, above. However, it is only when we start to consider the QuickRevisitMetric that the
differences between the hexdither and random dither start to become apparent. Looking at Panels 10g, 10h,
10i, and particularly 10l, we can see that in the case of no dithering, a small area of the sky receives a large
number of nights with more than 10 visits per night. These large numbers of revisits are due to both the Deep
Drilling observations and the field overlaps. However, with no dithering at all, most of the sky receives much
fewer than 5 nights with 10 or more visits within any night. Meanwhile, random dithering (where each visit is
independently and randomly dithered) spreads visits around the sky, so no significant portion of sky has more
than 20 nights with more than 10 visits – but the average patch of sky receives a larger number of nights with
10 or more revisits; i.e., the median number of nights with at least 10 revisits is higher than with no dithering.
Hexdither, on the other hand, because it keeps a constant offset from the original fixed field pointings for an
entire night (thus preserving field overlaps within a night, while still smoothing the location of the overlaps from
one night to the next), has an even higher median number of nights with 10 or more revisits. This is reflected
in the summary statistics for this Metric, see Table 1.

By creating Metrics tied closely to science goals, we can use MAF to analyze the effects of different dithering
strategies in detail as above. We can also use MAF to analyze multiple OpSim simulated surveys created with
different simulation parameters such as: varying the exposure time, obtaining visits in pairs (or singletons or
triples), changing the footprint of the survey, varying the airmass, seeing or skybrightness limits for obtaining
observations, or otherwise changing the cadence goals. This can be done simply by changing the name of the
database in the driver configuration file (also settable via the command line). In this way, MAF can be used to
evaluate different observing strategies.

4. WRITING A NEW METRIC

We anticipate that many users will want to write their own Metrics. The Metric class API is minimal to help
accommodate this. A base class provides the framework overhead, such as creating a column registry (so that
the framework can determine what columns to fetch from the database) and determining units for each column
if not provided by the user (so that plots can be properly labeled). This leaves the user free to concentrate on
the code relevant to their particular analysis.

Each Metric must have init and run methods. The run method is given only the data slice and the
slicePoint metadata§, applies the algorithm to calculate the metric value, and returns only that metric value for
that data slice. For the simplest metrics, operating on a single column and returning a scalar value for each data
slice, the user only needs to write the run method. An example of a simple Metric, providing only a new run
method is shown in Figure 11. Simple Metrics like these inherit from SimpleScalarMetric, which is a subclass
of the BaseMetric that provides some additional error checking about column names and returned data types.

By also extending the SimpleScalarMetric’s init method using Python’s super, users can provide con-
figurable parameters to each metric at run time or add their own column definitions. An example is the
PercentileMetric shown in Figure 12.

More complicated Metrics, such as those operating on more than one column or returning a complex data
type (such as a dictionary or an array), inherit directly from the BaseMetric. In addition, those returning a
complex data type can add ‘reduce’ methods, intended to take that complex data value and turn it into a scalar
for each slice. This is especially useful for Metrics where a computationally expensive value must be computed

§Many Metrics will not use the slicePoint metadata, but since the Driver uses Metrics interchangeably, the arguments
passed to the run method are the same for all Metrics.

opsim3.61 No dithering: Proper Motion @20 mag

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Proper Motion @20 mag (mas/yr)

(a)

opsim3.61 Hex dithering: Proper Motion @20 mag

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Proper Motion @20 mag (mas/yr)

(b)

opsim3.61 Random dithering: Proper Motion @20 mag

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Proper Motion @20 mag (mas/yr)

(c)

opsim3.61 No dithering: Proper Motion @24 mag

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Proper Motion @24 mag (mas/yr)

(d)

opsim3.61 Hex dithering: Proper Motion @24 mag

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Proper Motion @24 mag (mas/yr)

(e)

opsim3.61 Random dithering: Proper Motion @24 mag

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Proper Motion @24 mag (mas/yr)

(f)

opsim3.61 No dithering: QuickRevisit night

2 4 6 8 10 12 14 16 18 20
QuickRevisit night (night)

(g)

opsim3.61 Hex dithering: QuickRevisit night

2 4 6 8 10 12 14 16 18 20
QuickRevisit night (night)

(h)

opsim3.61 Random dithering: QuickRevisit night

2 4 6 8 10 12 14 16 18 20
QuickRevisit night (night)

(i)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Proper Motion @20 mag

0.000

2.098

4.196

6.295

8.393

10.491

A
re

a
 (

1
0

0
0

s
o
f

sq
u
a
re

 d
e
g
re

e
s)

 opsim3.61 Proper Motion @20 mag

 No dithering

 Random dithering

 Hex dithering

(j)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Proper Motion @24 mag

0.000

0.105

0.210

0.315

0.420

0.525

0.629

0.734

0.839

A
re

a
 (

1
0

0
0

s
o
f

sq
u
a
re

 d
e
g
re

e
s)

 opsim3.61 Proper Motion @24 mag

 No dithering

 Random dithering

 Hex dithering

(k)

0 10 20 30 40 50
Number of Nights with more than 10 visits

0.000

1.049

2.098

3.147

4.196

5.246

6.295

7.344

8.393

9.442

A
re

a
 (

1
0

0
0

s
o
f

sq
u
a
re

 d
e
g
re

e
s)

 opsim3.61 QuickRevisit night

 No dithering

 Random dithering

 Hex dithering

(l)

Figure 10: Analyzing the effects of dithering on proper motion measurements and the number of nights with
more than 10 visits (i.e., ’QuickRevisits’). Panels 10a, 10b, and 10c show the on-sky distribution of expected
errors in the measurement of proper motion for a 20th magnitude star in the case of no dithering, hex dithering
and random dithering, respectively (all visits in all bands at a particular RA/Dec are used to calculate the proper
motion; the Metric assumes there is no parallax to confuse the proper motion measurement). Panels 10d, 10e,
and 10f show the same for a 24th magnitude star. By examining the skymaps and panel 10j, we can see
that dithering is not very important for the proper motion measurement of high SNR stars, as generally each
measurement is simply running up against the noise floor of the astrometric measurements (with the notable
exception of the plane of the Milky Way, where fewer visits are obtained). However, as panel 10k shows, dithering
is an important consideration for lower SNR stars, and improves the median error in the proper motion by a
about a tenth of a mas/year, presumably due to the increase in the median number of visits and coadded depth.
Panels 10g, 10h and 10i contain plots showing the result of the QuickRevisitMetric, counting the number of
nights with more than 10 visits at each RA/Dec grid point. This Metric highlights some differences in the
dither strategies, visible in panel 10l. Because the random dither strategy dithers each visit independently, it
can decrease the number of revisits within a night by spreading these visits over a greater area and breaking
field overlaps. The hex dither preserves relative field placement within a night, applying a constant offset for the
pointings throughout an entire night.

Table 1: Summary statistics of Metrics applied to non-dithered, hex dithered, and randomly dithered OpSim
pointings using a HealpixSlicer with resolution of 27.4′′.

MetricName Metadata Median Mean RobustRMS

Nvisits g band (#) g No dithering 79.00 93.80 20.76
Nvisits g band (#) g Hex dithering 98.00 92.17 31.13
Nvisits g band (#) g Random dithering 98.00 91.68 33.36
Nvisits r band (#) r No dithering 174.00 195.00 60.04
Nvisits r band (#) r Hex dithering 217.00 192.72 94.89
Nvisits r band (#) r Random dithering 217.00 190.99 103.04
Coadded m5 g band (mag) g No dithering 27.13 26.98 0.21
Coadded m5 g band (mag) g Hex dithering 27.24 26.99 0.28
Coadded m5 g band (mag) g Random dithering 27.23 26.99 0.30
Coadded m5 r band (mag) r No dithering 27.34 27.04 0.28
Coadded m5 r band (mag) r Hex dithering 27.45 27.07 0.43
Coadded m5 r band (mag) r Random dithering 27.45 27.06 0.49
Proper Motion @20 mag (mas yr−1) No dithering 0.16 - 0.12
Proper Motion @20 mag (mas yr−1) Hex dithering 0.14 - 0.11
Proper Motion @20 mag (mas yr−1) Random dithering 0.14 - 0.11
Proper Motion @24 mag (mas yr−1) No dithering 1.54 - 2.73
Proper Motion @24 mag (mas yr−1) Hex dithering 1.42 - 2.23
Proper Motion @24 mag (mas yr−1) Random dithering 1.42 - 2.23
QuickRevisit night (# nights) No dithering 1.00 7.84 5.19
QuickRevisit night (# nights) Hex dithering 7.00 7.70 5.19
QuickRevisit night (# nights) Random dithering 4.00 6.35 3.71

class RobustRmsMetric(SimpleScalarMetric):
”””
Use the inter−quart i le range of the data to estimate the RMS.
Robust since th is calculation does not include out l i ers in the
dis tr ibut ion .
”””
def run(self , dataSlice , slicePoint):

iqr = np.percentile(dataSlice[self.colname], 75) -
np.percentile(dataSlice[self.colname], 25)

rms = iqr /1.349 #approximation
return rms

Figure 11: Example of writing a new simple Metric, operating on a single data column and returning a scalar
value for each data slice. The class inherits from SimpleScalarMetric and uses this init method, but provides
its own run method.

class PercentileMetric(SimpleScalarMetric):
def __init__(self , colname , percentile =90, ** kwargs):

super(PercentileMetric , self).__init__(colname , ** kwargs)
self.percentile = percentile

def run(self , dataSlice , slicePoint):
return np.percentile(dataSlice[self.colname], self.percentile)

Figure 12: Example of writing a new simple Metric that includes a run-time configurable parameter (the
percentile value). The class inherits from the SimpleScalarMetric, but extends the init method, while still
providing its own run method.

class VisitGroupsMetric(BaseMetric):
”””Count the number of v i s i t s per night within deltaTmin and deltaTmax .”””
def __init__(self , timesCol=’expMJD ’, nightsCol=’night’,

deltaTmin =15.0/60.0/24.0 , deltaTmax =90.0/60.0/24.0 , minNVisits =2, window =30, minNNights =3,
** kwargs):

#. . . <snip> . . . # Removed l ines set t ing internal variables to passed values
super(VisitGroupsMetric , self).__init__ ([self.times , self.nights], ** kwargs)

def run(self , dataSlice):
”””
Return a dictionary of :
the number of v i s i t s within a night (within delta tmin/tmax of another v i s i t) ,
and the nights with v i s i t s > minNVisits .

Count two v i s i t s which are within tmin of each other , but which have another v i s i t
within tmin/tmax interval , as one and a hal f (instead of two) .

”””
uniquenights = np.unique(dataSlice[self.nights])
nights = []
visitNum = []

#. . . <snip> . . . # Removed l ines with de ta i l s of calculation
metricval = {’visits ’:visitNum , ’nights ’:nights}
i f len(visitNum) == 0:

return self.badval
return metricval

def reduceMedian(self , metricval):
”””Reduce to median number of v i s i t s per night (2 v i s i t s = 1 pair) . ”””
return np.median(metricval[’visits ’])

def reduceNNightsWithNVisits(self , metricval):
”””Reduce to to ta l number of nights with more than ’minNVisits ’ v i s i t s . ”””
condition = (metricval[’visits ’] >= self.minNVisits)
return len(metricval[’visits ’][condition])

def reduceNVisitsInWindow(self , metricval):
”””Reduce to max number of to ta l v i s i t s on a l l nights with more than minNVisits , within any ’window ’

(default=30 nights) . ”””
maxnvisits = 0
for n in metricval[’nights ’]:

vw, nw = self._inWindow(metricval[’visits ’], metricval[’nights ’], n, self.window , self.minNVisits
)

maxnvisits = max((vw.sum(), maxnvisits))
return maxnvisits

Figure 13: Example of a more complex Metric that returns a dictionary from the run method and then provides
several reduce methods to evaluate different aspects of those calculated values. Both the run method and the
reduce methods are called for each slice in the Slicer.

but then could be interpreted in multiple ways to produce scalar values at each slicePoint for visualization. First
the Metric run is called for each data slice; then all reduce methods are called for each data slice (but passed
the metric value calculated by the run method at that point).

An example is the VisitGroupsMetric: this Metric is intended to examine how visits are paired together
as a preliminary exploration of how well an OpSim simulated survey might perform for solar system object
discovery. First the Metric calculates the number of visits within a given time interval on each night, for each
data slice, returning a dictionary containing the nights that multiple visits were achieved and the total number
of visits on each of those nights that were within the time interval. Then different reduce methods operate
on each metric value (corresponding to each original data slice), calculating the median number of visits, the
number of times that more than a threshold number of visits occurred within some larger time interval of number
of nights, the number of lunations that received more than a threshold number of nights with multiple visits,
and the number of successive lunations that received more than a threshold number of nights with multiple
visits. The reduce methods provide multiple views into the underlying question (how visits are paired together
for discovering solar system objects) and are all desirable; however, the first step is somewhat computationally
expensive. By allowing multiple reduce methods, we can take the original data slice and end up examining it
in multiple ways with minimal cost. Code for the VisitGroupsMetric can be found online in the LSST Stash
repository at http://ls.st/rkw, but excerpts illustrating the run and reduce methods are shown in Figure 13.

http://ls.st/rkw

More information on writing and using your own Metrics is available in the MAF documentation.

5. CONCLUSIONS

MAF has been designed to provide an easy to use, easy to extend framework to analyze LSST OpSim simulated
surveys. It is a powerful tool for evaluating the effects of observing strategies, including dithering strategies. By
collaborating with the wider LSST community to create new Metrics covering a wide range of science cases,
we hope to discover optimal strategies for the scheduling of LSST and quantify both the overall efficiency of the
surveys and their scientific potential.

Beyond analyzing LSST OpSim outputs, MAF can be applied to any dataset. Much of the necessary frame-
work requirements are available in base classes (as well as an illustration of the required API), which can be
extended for use with a particular dataset. For example, if a user writes a custom Metric and uses that with
one of MAF’s Slicers (or writes their own Slicer for a specific purpose), but then wants to analyze observing
histories from other telescopes instead of (or as well as) LSST OpSim data, all that is required is a new Database

class to access the new pointing history.

We intend to continue development on MAF, in particular improving the presentation of MAF outputs using
a web interface. In addition, we welcome community contributions to MAF, including new Metrics, Slicers, or
Database classes. There are several avenues for input including direct contact with the LSST Simulations group
(lsst-imsim@lsstcorp.org), a series of workshops on the OpSim observing strategy, to be hosted by NOAO
and LSST, starting August 2014 with the ‘LSST Observing Cadences Workshop’ (http://ls.st/2xd), and we
will be hosting contributed code within the LSST Stash repository.

APPENDIX A. URLS

This section contains the expansion of the shortened URLs in the body of this paper, along with a brief summary
of the content at the URL location. All URLs are current at the time of this paper’s publication.

MAF documentation is hosted at: http://ls.st/ziz (expands to https://confluence.lsstcorp.org/

display/SIM/MAF+documentation).

The MAF git repository is hosted at: http://ls.st/pxj (expands to https://stash.lsstcorp.org/

projects/SIM/repos/sims_maf/).

The full example MAF driver script is available at: http://ls.st/mxl (expands to https://stash.lsstcorp.
org/projects/SIM/repos/sims_maf/browse/doc/SPIE_2014/testdriver2.py?at=refs%2Fheads%2Ffeature%

2FOPSIM-461-spie-paper-for-maf).

The VisitGroupsMetric class can be browsed in the LSST Stash repository at: http://ls.st/rkw (expands
to https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/browse/python/lsst/sims/maf/metrics/
visitGroupsMetric.py).

Details about the first joint NOAO and LSST Observing Cadences Workshop are available at: http://ls.

st/2xd (expands to https://project.lsst.org/meetings/ocw/).

ACKNOWLEDGMENTS

We would like to thank Alex Kim, Seth Digel, Phil Marshall, Knut Olsen, and Michael Woods-Vasey for partic-
ipating in beta testing and providing feedback on early documentation for MAF.

LSST project activities are supported in part by the National Science Foundation through Cooperative Sup-
port Agreement (CSA) Award No. AST-1227061 under Governing Cooperative Agreement 1258333 managed by
the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under con-
tract with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations,
grants to universities, and in-kind support from LSSTC Institutional Members.

lsst-imsim@lsstcorp.org
http://ls.st/2xd
http://ls.st/ziz
https://confluence.lsstcorp.org/display/SIM/MAF+documentation
https://confluence.lsstcorp.org/display/SIM/MAF+documentation
http://ls.st/pxj
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/
http://ls.st/mxl
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/browse/doc/SPIE_2014/testdriver2.py?at=refs%2Fheads%2Ffeature%2FOPSIM-461-spie-paper-for-maf
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/browse/doc/SPIE_2014/testdriver2.py?at=refs%2Fheads%2Ffeature%2FOPSIM-461-spie-paper-for-maf
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/browse/doc/SPIE_2014/testdriver2.py?at=refs%2Fheads%2Ffeature%2FOPSIM-461-spie-paper-for-maf
http://ls.st/rkw
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/browse/python/lsst/sims/maf/metrics/visitGroupsMetric.py
https://stash.lsstcorp.org/projects/SIM/repos/sims_maf/browse/python/lsst/sims/maf/metrics/visitGroupsMetric.py
http://ls.st/2xd
http://ls.st/2xd
https://project.lsst.org/meetings/ocw/

REFERENCES

[1] Delgado, F., Saha, A., Chandrasekharan, S., Cook, K., Petry, C., and Ridgway, S., “The LSST operations
simulator,” This proceedings.

[2] Ridgway, S., Cook, K., Miller, M., Petry, C., Chandrasekharan, S., Saha, A., Allsman, R., Axelrod, T.,
Claver, C., Delgado, F., Ivezic, Z., Jones, R. L., Krughoff, S., Pierfederici, F., and Pinto, P., “Simulation
of autonomous observing with a ground-based telescope: the LSST experience,” in [Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series], Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series 7737 (July 2010).

[3] Delgado, F., Cook, K., Miller, M., Allsman, R., and Pierfederici, F., “LSST operation simulator imple-
mentation,” in [Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series], Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series 6270 (July 2006).

[4] Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelmann, M.,
“HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the
Sphere,” ApJ 622, 759–771 (Apr. 2005).

[5] “Sqlalchemy.” http://www.sqlalchemy.org/.

[6] Carroll, C. M., Gawiser, E., Kurczynski, P. L., Bailey, R. A., Biswas, R., Cinabro, D., Jha, S. W., Jones,
R. L., Krughoff, K. S., Sonawalla, A., Wood-Vasey, M., and LSST Dark Energy Science Collaboration, T.,
“Improving the LSST dithering pattern and cadence for dark energy studies,” This proceedings.

http://www.sqlalchemy.org/

	INTRODUCTION
	Framework Design
	The Metrics module
	The Slicers module
	The SliceMetric module
	The Database module
	Framework Data Flow
	The Driver module

	MAF applications
	A simple analysis using the UniSlicer
	Analysis including visualization: OneDSlicer and HealpixSlicer
	Adding summary statistics
	Evaluating dithering strategies: Adding columns on the fly

	Writing a new Metric
	Conclusions
	URLs

