
Sensor model and validations

Chris Walter SLAC GalSim meeting 05/19/16

Needed for sensor model

• A whole set of silicon effects

Currently only BF implemented (more detail later)

- Electronics readout and camera geometry
 - LSST WCS and camera geometry exist but are not yet merged (Scott D.) Some of it is in GalSim interface, some in a outstanding GalSim PR.
 - There is no real electronics readout module but
 Jim C. etc are willing to help implement.

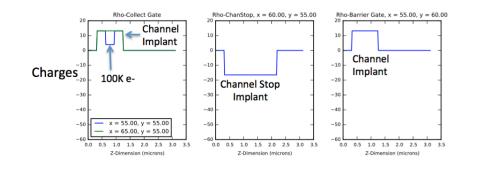
Current implementation of these features in PhoSim (at various levels of validations)

- A/R Coating
- Charge Diffusion
- Fringing
- Debris on surfaces (-> non-uniform QE)
- Field-free non-uniform layer (-> short wavelength QE variations)
- Brighter-Fatter effect
- Tree Rings
- Edge effects
- Pixel boundary errors
- Dead Layer

Not in PhoSim (but we need it)

- Cross talk (infrastructure exists, but not used?)
- Midline Stop Blooming
- Pixel size variation?
- More?

For realistic output need to match real CSS/raft electronics:


• With the real CCS and raft electronics we need:

Bias, gain, segmentation, pre/over scans, nonlinearity, cross-talk, CTE, hot pixels/columns, ADC errors, dark current, read noise, cosmicrays etc.)

Craig L. has made a physics based electrostatic solver.

What are the Free Parameters?

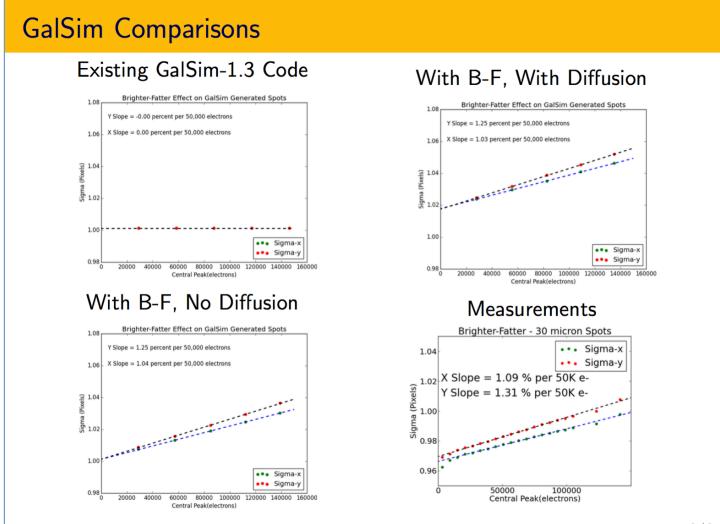
- Diffusion Model:
 - None Well established Silicon parameters.
- Potentials at Boundaries:
 - None Applied voltages and geometries are known.
- Charges in Silicon Bulk:
 - Total Charge, Depth, and Profile in Channel region
 - Total Charge, Depth, and Profile in Channel Stop region
 - Is Channel Stop region depleted or are there free holes?
 - We will attempt to determine them with CCD measurements.

But... currently too slow to plug in directly. So we need an interpolation scheme.

Review of Strategy for Integrating Poisson Simulator into PhoSim

- Use the Poisson simulator to pre-calculate pixel vertex displacements as a function of charge and Z-height.
 - This will only need to be re-calculated when the CCD model or CCD parameters (voltages, temperatures, etc.) change.
- At PhoSim start-up read in pixel vertex displacements.
- For each photo-electron, build displaced pixel boundaries based on charge built up in surrounding pixels.
 - Currently going to +/-3 pixels.
- Use distorted pixel boundaries to decide where photoelectron ends up.

How can we use this model with GalSim?


- In order to deal with dynamic effects we need to build up the image.
 - Use the 'photon shooting method'. Photos are sampled from a probability distribution based on the object profile and projected onto pixels.
 - Doing this one-object-a-time won't work. We need to first build a "truth profile" of the whole and image and then sample from that.

At DESC meeting they made a first pass:

Summary

- At the SLAC DESC meeting Hack Day, we successfully integrated distorted pixels in the GalSim photon shooting routine to model the brighter-fatter effect.
- Initial implementation resulted in 10X slowdown of the photon shooting, from $\approx 1,000,000$ photons/second to $\approx 100,000$ photons/second.
 - This first implementation recalculates the pixel shape for every photon.
 - Going forward, we will only re-calculate the photon shape for every N photons added to a pixel, with $N\approx 1000.$
 - We have mapped out how to do this, but it still needs to be implemented.

Working to 1st order.

Main issues

- Sensor effects are wavelength dependent! We need a way to keep this information.
 - Could interface into chromatic objects by binning truth in frequency and drawing from that.
 - Should we consider a real raytracing mode?
 - I have a student who will do some tests with chromatic photon shooting starting in about a week, for a month.
 - Need validated diffusion model.
- We need the API to be quite general.
 - It shouldn't be tailored to (e.g.) the interpolated model.

Ray tracing questions

- If we used raytracing for the atmosphere (for speed), could we turn this back into wavefronts for the optics (by calculating the OPDs)? Then, of course we would need to go back to photon shooting.
- Does this make sense?

DESC SRM DC Needs

Q13	Q9	Q9	Q9	QSO	2: Q9	Q8_	_ Q8	_2_0	28_3	Q8_	_4_Q	8_5_	Q8_6	Q11	Q12	Q10	Q5		Q7_1_1		Q9_1	Q9_2	Q10_1	Q10_2	Q10_3	Q10_4	Q10_5	Q10_6	Q10_7	Q10_8
Which group are you representing for this survey?	u	g	ri	iz	У	#u	#g	#	ŧr	#i	#z		#y	Prefered Cadence	SSOs?	If you care: Max # back-to-back exposures with coherence in atmospheric PSF.	Variation of the PSF across the focal plan should be:	Sky model should be based on:	Clouds?		In Sky Model: Gradients across image?	In Sky Model: Twilight?	Sensor: Fringing		Sensor: Brighter Fatter	Sensor: Tree Rings	Sensor: Edge Effects	Sensor: Saturation	Sensor: Blooming	Sensor: Simulated electronics readout
Photoz	1	1	1	1 1	L 1									WFD		N/A		OpSim	Yes	Yes	No	No	_	Yes						1
SL CX2 Twinkles	1	1	1	1 1	L 1	56	5	80	184	18	84	160	160	WFD	No	N/A	LSST Like	OpSim	No	No	Yes	Yes	No		No	No	No	Yes	Yes	No
Supernova			1			c)	0	100	1	0	0	0	Twinkles DDF	No	N/A		OpSim	No	No	No	No	No	No	No	No	No	Yes	Yes	No
LSS (Updated)			1						50					WFD	Νο	N/A.	8m optics	OpSim	No	Yes		No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
WL			1						10					DDF	No		L LSST Like	OpSim	No	Yes	No	No	No	No	Yes	No		No	No	No
Clusters (Updated)			1	1					50		50				No	N/A		Fixed bright and dark with and without moon.	No	No			No	No	No	No	No	Yes	Yes	No
	R&I 150 WL Twi	l will) visi will inkle	fulfi ts in use s wil	ill ev bot Gals Il rui	veryo h? Sim	ems	exce elves	ary ii pt Tw ; / Do	vinkle						No (BLANK = D	Only WL cares Don't Care)	LSST Like	OpSim	No	Mixed	Only Twinkle	es for both	LSS WANTS (BLANK = D	EVERYYTHING on't Care)	i			Except WL	Except WL	

For DC1 only saturation and blooming needed immediately. For DC2 will likely also need BF etc

Sensor Model Validation

Sensor Anomalies WG Key Projects:

Key Project SA1: Brighter-Fatter Effect	86
Key Project SA2: Static sensor effects	87
Key Project SA3: Collect and reduce astronomical data with LSST sensors	88
Key Project SA4: Studies of the CCD parameter space	89

We need so model and validate sensor effects by using test stand data from BNL, SLAC, and Davis.

Sensors also taking data on the sky

Validation efforts happening in SAWG

• Brighter-Fatter

Main focus now

- Tree Rings
- Edge effects

Work is happening with many techniques:

- Test stands, flats, pin holes, optical simulators
- PhoSim simulations, Electrostatic Solvers, commercial chip programs, ..

More validation thoughts

- Adding in all of the other effects is a fair amount of work.
 - Person power? How do these get added to Craig's model?
 I want to insist that we build a "physics based model".
- But, I feel we are not really "behind" when it comes to the validation. That all really needs to be done (again?) anyway for our chosen sensors.
- If we can build a simulation package, validating it is something we can naturally slot into the existing plan.
- We do need a plan and people so we can work together.

Conclusions / Comments

- We should write a document capturing this (broader) discussion, proposing what we need to do so we can see the big picture and check off on projects as they are completed.
- Calibration systems need to be simulated (lab + telescope).
- To make a quick start I think we also need a phosim instance catalog parser + LSST chip output package. Scott has code that does part of this in the CatSim interface. Having this would allow rapid progress on all other fronts.
 - This would allow us to use the infrastructure we have already built for validation.