GalSím

Galaxy Simulation Software Package

Mike Jarvis LSST Simulations Meeting May 19, 2016 <u>https://github.com/GalSim-developers/GalSim</u>

Overview

- Simulates images of galaxies, stars, noise, etc.
- Originally designed for Great3 WL challenge.
- Can draw using FFTs, photon shooting, or real space convolution/rendering as appropriate.
- Was designed to have shapes accurate to 2e-4.
- Has a variety of options for all aspects of the rendering (PSF, galaxy profile, WCS, noise, etc.)

Code Design

- Open source.
- Modular structure (easy to add new features).
- Ability to trade between speed and accuracy.
- Intuitive Python layer wrapping fast C++.
- Even more intuitive configuration file interface.
- All code reviewed by typically 2 team members.

PSF Profiles

- Gaussian
- Moffat
- Kolmogorov
- Airy (with optional central obscuration)
- OpticalPSF (incl. Zernike to arbitrary order, obscuration, struts, or arbitrary spider pattern)
- InterpolatedImage (arbitrary image, e.g. PSFEx)

Galaxy Profiles

- Exponential
- DeVaucouleurs
- Sersíc
- InterpolatedImage (can use any provided image as a starting profile)
- RealGalaxy (several available HST catalogs, properly deconvolving HST PSF)

Transformations

- Any profile can be:
 - sheared
 - dílated
 - rotated
 - shifted
 - scaled in flux
 - added to another profile
 - convolved with another profile
 - deconvolved by another profile (FFT only!)

Weak Lensing

- Realistic shear models
 - NFWHalo model
 - Cosmologícal (or other) PowerSpectrum
 - Can specify E an B power spectra separately
- These also include the corresponding convergence field so magnification and shear can be done consistently.

Random Numbers

- Can draw random numbers from:
 - Uniform Deviate samples from uniform distribution
 - GaussianDeviate samples from normal distribution
 - PoissonDeviate handles Poisson number counts
 - other more exotic distributions (binomial, chi2, Weibull, gamma)
 - DistDevaite can use any arbitrary (user-provided) probability distribution
- "Random" numbers are deterministic given a seed, even when splitting job into multiple sub-jobs.

World Coordinate Systems

- Handles a variety of WCS transformations
 - PixelScale (the simple case of square pixels)
 - JacobianWCS (arbitrary local Jacobian defined by du/dx, du/dy, dv/dx, dv/dy)
 - Affine Transform (Jacobian with an arbitrary offset)
 - FitsWCS (read standard WCS types from FITS file)
 - **UVFunction** (any arbitrary function from (x,y) to tangent plane (u,v))
 - RaDecFunction (any arbitrary function from (x,y) to (RA, Dec))

Rendering Images

- Most calculations are deferred until image is rendered.
- Can use either FFT or photon shooting
 Caveat: Photon shooting doesn't work when deconvolving. This includes RealGalaxy profiles.
- Can draw at arbitrary position in image.
- Can place postage stamps in tiles or randomly.
- Can set parameters that trade off accuracy vs speed.

Chromatic Profiles

- Chromatic is simplest case of a profile with a uniform SED.
- ChromaticAtmosphere will apply the correct shift and shear for DCR to a given (e.g. Kolmogorov) profile
- ChromaticAiry properly handles the λ/D parameter across the bandpass.
- ChromaticOpticalPSF properly scales the Zernike coefficients with wavelength (in addition to λ/D).
- Renders images by integrating over Bandpass.

Noíse Models

- GaussianNoise
- PoissonNoise
- CCDNoise includes Poisson photon noise (with optional gain) and Gaussian read noise.
- VariableGaussianNoise (sigma different for each pixel)
- CorrelatedNoise
- Can also whiten images to remove existing correlated noise.

Detector Effects

- Brighter-fatter effect
 - Currently has Gruen implementation of Antilogus et al
 - Craig Lage is working on incorporating his physical model tracking individual electrons.
- Non-linearity
- Edge distortion and tree rings could be modeled with custom WCS, but nothing native currently.

Shape Measurement

- Includes HSM module for measuring shapes of galaxies.
- FíndAdaptíveMom performs an adaptíve moments measurement
- EstimateShear accounts for PSF convolution
 - KSB method
 - Re-Gaussianization (Hirata & Seljak, 2003)
 - ``Línear'' (H&S correction to Bernstein&Jarvis, 2002 method)

GalSím Demos

- Demo scripts are in GalSim/examples directory.
 - demo1.py ... demo13.py
 - demo1.yaml ... demo11.yaml
- After installing GalSim, you can run (for example)
 - python demo1.py
 - galsim demo1.yaml
- Most features are in at least one demo script.
- Python and YAML versions produce identical output files.

Demo1.py

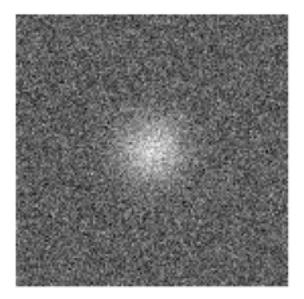
import galsim

```
gal = galsim.Gaussian(flux=1.e5, sigma=2)
```

psf = galsim.Gaussian(flux=1., sigma=1.)

final = galsim.Convolve(gal, psf)

image = final.drawImage(scale=0.2)


```
noise = galsim.GaussianNoise(sigma=30.)
image.addNoise(noise)
```

```
file_name = 'output/demo1.fits'
image.write(file_name)
```

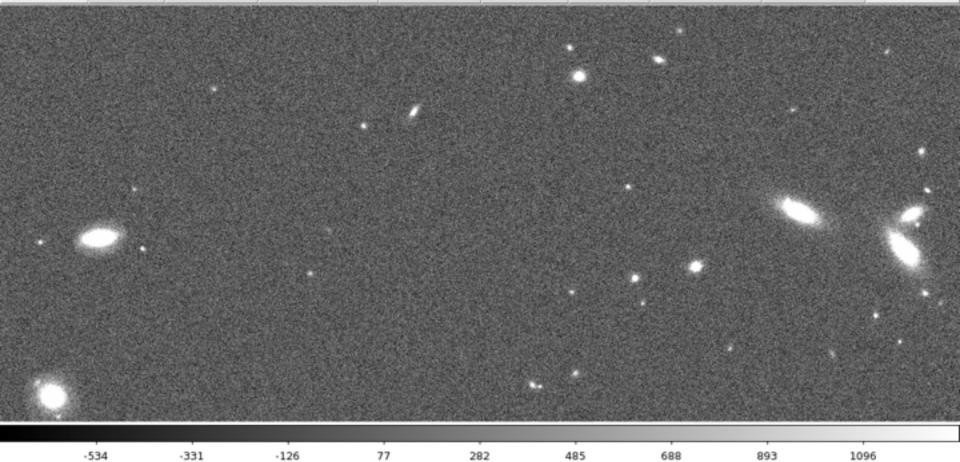
Demo1.yaml

```
gal :
    type : Gaussian
    sigma : 2
    flux : 1.e5
psf :
    type : Gaussian
    sigma : 1
image :
    pixel_scale : 0.2
    noise :
        type : Gaussian
        sigma : 30
output :
    dir : output yaml
    file_name : demo1.fits
```

000		XS	AOImage ds9		
File Edit View	Frame Bin Zoor	n Scale Color	r Region WCS	Analysis Help	
File	demo1.fits				1
Object				N	
Value					
WCS	37.95	16.2		E CARACTER ST	
Physical X	Y			the second second	
Image X	Y				
Frame 1 ×	2.000	0.000 °			
file edit	view frame	bin z	zoom scale	color region wc	s help
- + to	fit zoom 1/8	zoom 1/4	zoom 1/2 zoo	om 1 zoom 2 zoom 4	zoom 8

Demo11.yaml

```
eval variables :
    fpixel scale : &pixel scale 0.2
    atheta : &theta 0.17 degrees
    ftel diam : &tel diam 4
    fexp time : &exp time 300
    fimage size : &image size 1800
    inobjects : &nobjects 288
psf :
    type : InterpolatedImage
    image : "data/example sdss psf sky0.fits.bz2"
    scale : *pixel scale
qal :
    type : COSMOSGalaxy
    gal type :
        type : List
        items : [ 'parametric', 'real' ]
        index : { type : RandomBinomial, N : 1, p : 0.3 }
    noise pad size : 11.3
    index : { type : Random }
    shear : { type : PowerSpectrumShear }
    magnification : { type : PowerSpectrumMagnification }
    rotation : { type : Random }
    scale flux :
        type : Eval
        str : "(tel diam**2 / (2.4**2*(1.-0.33**2))) * exp time"
stamp :
    draw method : no pixel
```


```
image :
    type : Scattered
    size : *image size
    nobjects : *nobjects
    index convention : 0
    noise :
        type : Gaussian
        variance : 5.0e4
                          # Total variance including whatever the symmetrize process needs.
        symmetrize : 8
    WCS :
        type : Tan
        dudx : { type : Eval, str : 'math.cos(theta.rad()) * pixel scale' }
        dudy : { type : Eval, str : '-math.sin(theta.rad()) * pixel scale' }
        dvdx : { type : Eval, str : 'math.sin(theta.rad()) * pixel_scale' }
        dvdy : { type : Eval, str : 'math.cos(theta.rad()) * pixel scale' }
        units : arcsec
        origin : center
        ra: 19.3 hours
        dec : -33.1 degrees
    random seed : 24783923
    nproc : -1
input :
    cosmos catalog :
        dir : "data"
        file name : real galaxy catalog example.fits
        use real : True
    power spectrum :
        e power function : "data/cosmo-fid.zmed1.00.out"
        units : radians
        grid spacing : 90 # arcsec
output :
    dir : output yaml
    file name : tabulated power spectrum.fits.fz
```

000

X SAOImage ds9

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

File		tabulated_pow	er_	spectrum.fits.f	z											(2003)	NEDE	CRORODOG -	1007	NUTRY PARA
Object																	X	the sea	886	80
Value		3747.35	J													1000		ID A DECE	252	n 34
fk5	α	19:17:50.537	δ	-33:07:32.73	3												l and	X	B.	 338
Physical	x	1493.500	Y	435.000												See.	1		Steel	and Park
Image	x	1493.500	Y	435.000												100			240	100.00
Frame 1	x	1.000	Ì	0.000	•											Manage 1	100000		MER	COLORADO
file		edit		view	frame	t	bin	z	oom		scale	1		color		region		wcs		help
linear		log		power	square ro	ot	s	quared		a	sinh	5	sinh		histo	ogram		min max		zscale

LSST-Specific Features

• LSST WCS

- Includes knowledge of chip layout as well as expected SIP component of each chip's WCS.
- Currently in code review, will be in the next release, version 1.4.
- Requires a LSST-DM stack installation to use.
- Nothing else yet.

- Chromatic RealGalaxy [#640]
 - Can take images from two or more observed bands and simulate a different band.
- Realistic Atmospheric PSF [#549]
 - Track phase screen from multiple atmospheric layers using correct Fourier optics
- Both are currently in code review.

- Physics-based models of brighter/fatter [#722]
 - Craig Lage is working on incorporating his physicsbased simulation of the CCD silicon to improve the implementation of brighter/fatter.
 - Intrinsically photon-shooting method, but for FFT methods, we essentially draw the image and then photon shoot that.
 - For now, achromatic, but will add chromaticity.

- Model of LSST PSF [#556]
 - Spider pattern
 - Reference values for aberrations.
 - Approximate rms values of aberrations.
 - Model of how they will vary (correlated?) across the field of view.
 - Election diffusion in CCD

- Chromatic photon shooting [#540]
- Add chromatic options to config module [#510]
- Proper field dependence of aberrations [#716]
- Vignetting, non-uniform QE [#553]
- Extinction, opacity [#541, #550]
- Realistic galaxy profiles from hydro simulations
 [#669]

- Automatically chose FFT for bright objects and photon shooting for faint objects [#209]
- More image artifacts
 - cosmíc rays
 - saturation
 - bad/hot píx, columns, etc.
 - cross-talk
 - charge transfer inefficiency
- Lots more: https://github.com/GalSim-developers/GalSim/issues