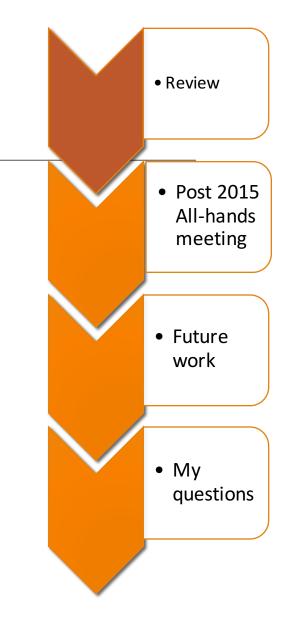
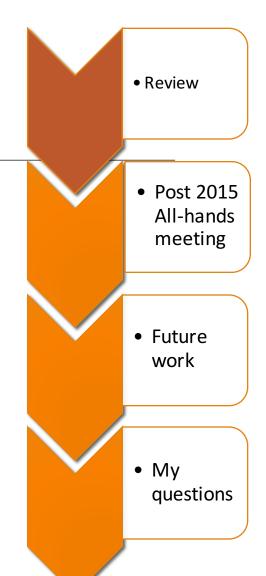
LSST Feature-based Scheduler



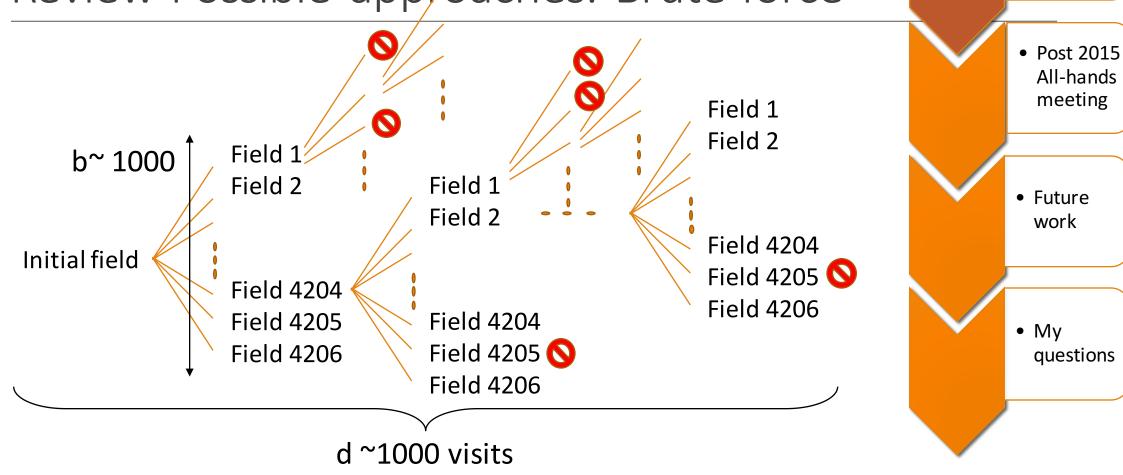
Review

Problem setting:

- Sequential decision making problem
- Measurable Objectives:
 - ➤ Maximum cumulative co-added depth
 - > Uniform coverage
 - Scientific metrics
- Constraints:
 - Revisit window
 - Visibility
 - > Scientific constraints


Review: Objectives (for One night scheduling)

- Maximum cumulative co-added depth
 - ➤ (Maximize) Number of the visits
 - (Maximize) Average of the field's separation with the Moon
 - ➤ (Maximize) Average of the observation altitude
- > Uniform coverage
 - (Minimize) The number of fields that are missed for the second visit
- Scientific metrics
 - **>** .

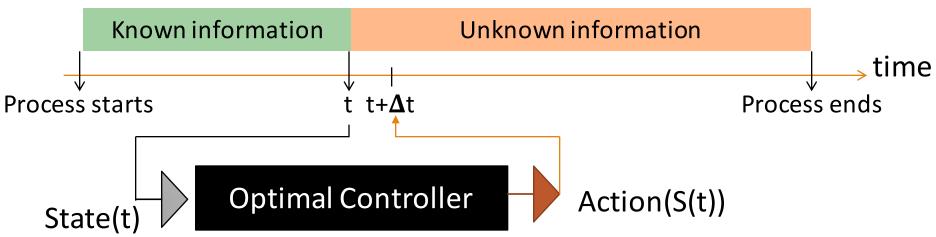

Review • Post 2015 All-hands meeting • Future work • Mv questions

Review: Constraints (for One night scheduling)

- > Revisit window
 - Fixed revisit window of 15-60 minutes for all fields
- Visibility
 - > Avoid fields with alt < 0
 - > Avoid fields below 1.4 airmass
- > Scientific constraints
 - **>** .

Review Possible approaches: Brute force

Review


Review Possible approaches: Optimal Control

Framework:

- >S(t): state of the system: Full description of the current status
 - History, Current cloud coverage, sky brightness
- >A(S(t)): Action to be taken for transition to the next state
 - O Next field ∈ { i | i is a feasible field at t }
- ➤ Optimal Controller: mapping: {S} -> {A}
- ➤ Underlying dynamic of the disturbances:
 - Probability distribution of the clouds
 - Sky brightness

Review • Post 2015 All-hands meeting • Future work • Mv questions

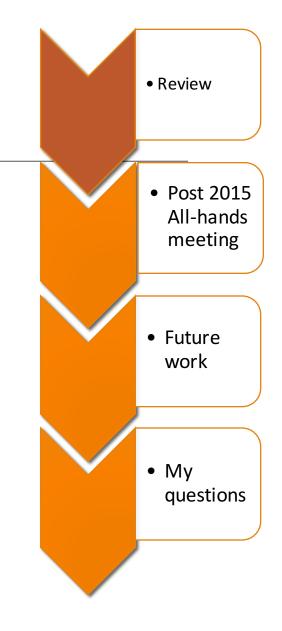
Review Possible approaches: Optimal Control

Achieves the global (expected) optimum of the objective.

Review • Post 2015 All-hands meeting • Future work • My questions

Review Possible approaches: Approximate optimal control

Approximation 1:


- S(t): state of the system: Full description of the current status
- > F(t): features of the system
 - o For instance: History, time of the last two visits of each field
- \triangleright A(S(t)): Action to be taken for transition to the next state
 - o Next field ∈ { i | i is a feasible field at t }

Approximation 2:

- > Optimal Controller: mapping: {S} -> {A} : Assuming structure
 - For instance: Linear cost function

Approximation 3:

- ➤ Underlying dynamic of the disturbances: **Approximate dynamic**
 - Probability distribution of the clouds
 - Sky brightness

Review: Feature space

For each field: i, at current time: t

• number of previous visits, time of the last visit until t: Hist(i,t)

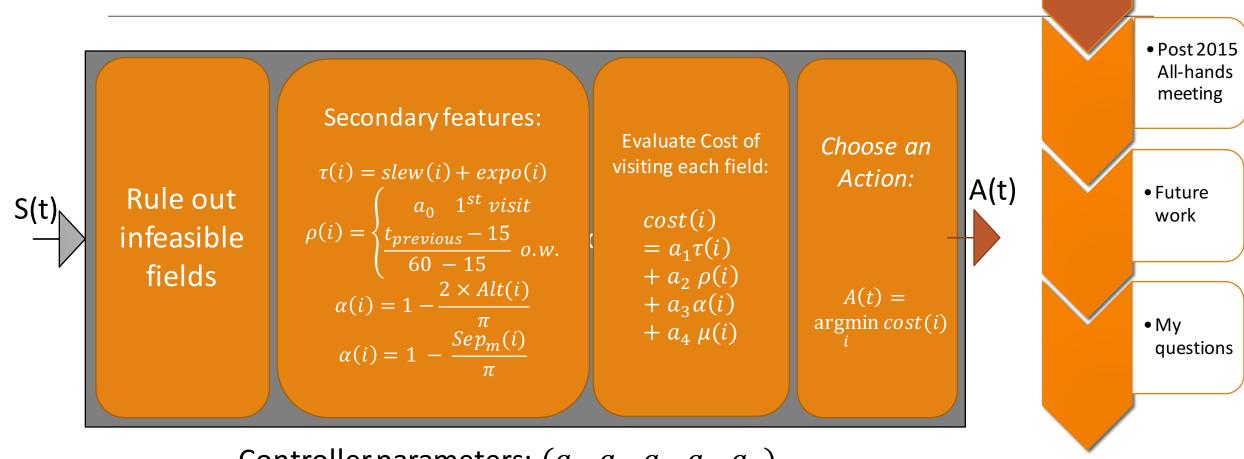
• Slew time from the current field: Slew(i)

• Exposure time needed: Expo(i,t)

• Altitude and Azimuth: Alt(i,t), Az(i,t)

• Air-mass constraint: $Airmass(i,t) \in \{0,1\}$

• Separation with the Moon: $Sep_M(i,t)$


Review

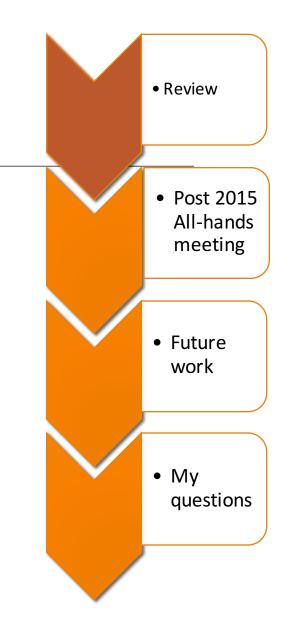
 Post 2015 All-hands meeting

Future work

• My questions

Review: Controller

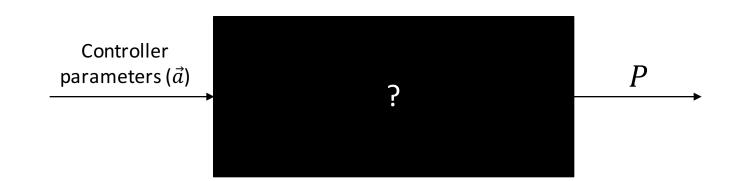
Controller parameters: $(a_0, a_1, a_2, a_3, a_4)$


Review

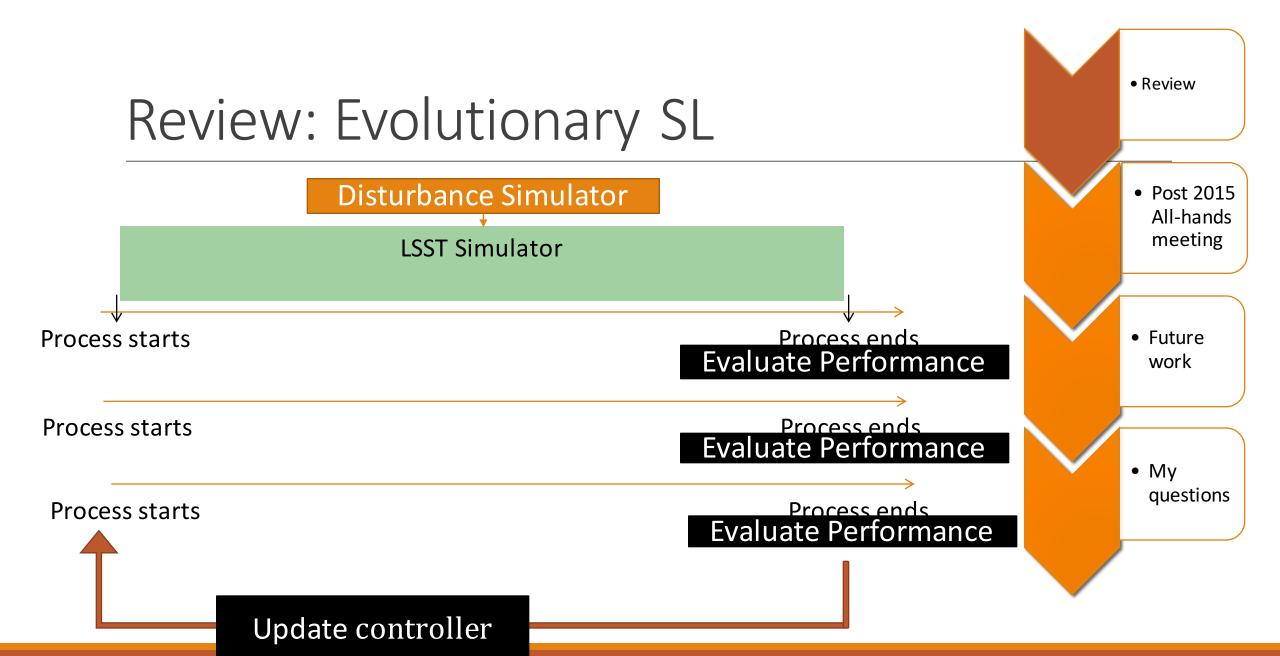
Review capabilities

- > Handles individual constraints/cost evaluations for individual fields
 - For field I, revisit window of 10-20 minutes is preferable
- Handles intervention
 - \triangleright We can take an action different from A(t), and continue with the controller for t+ Δ t
- > Flexible trade-off between optimality and computational effort
 - Using categories of nights to train or an average night
- > Flexible trade-off between optimality and model accuracy
 - ►If co-added depth was not available, number of the previous visits would also work.

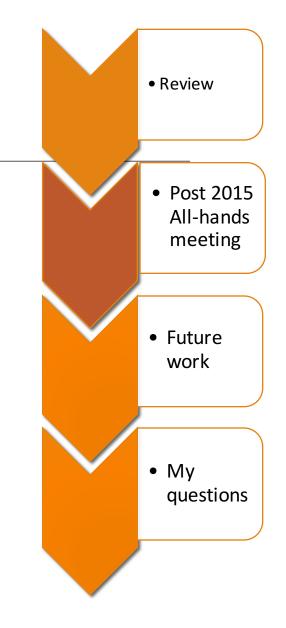
Review: Optimization


- ➤ Objective function: Telescope performance:
 - Maximum cumulative co-added depth
 - Uniform coverage
 - Scientific metrics
- \triangleright Variables: Controller parameters (\vec{a})
- Constraints: Regularization of the parameters
 - For instance: $\vec{a} \in cube \ or \ simplex$

Review: Performance function


- Measurable Values at the end of the observation
 - The number of fields visited twice: N_{twice}
 - The number of fields that are missed for the second visit: N_{once}
 - Average of the observation altitude: \overline{Alt}
 - Average of the field's separation with the Moon: $\overline{Sep_M}$

$$P := 2 \times N_{\text{twice}} - 1 \times N_{\text{once}} + 5 \times \overline{Alt} + 3 \times \overline{Sep_M}$$


Review • Post 2015 All-hands meeting • Future work • My questions

Review Review: Supervised learning (SL) • Post 2015 **Disturbance Simulator** All-hands meeting **LSST Simulator** • Future work Process ends **Process starts** • My **Evaluate Performance** questions Update controller

Post 2015 All-hands meeting

- > Improve approximations
 - ➤ Approximation 1: State space approximation
 - ➤ Approximation 2: Controller structure
 - >Approximation 3: Underlying dynamics
- > Implementation
 - ➤ Piecewise constant features
 - >SQLite output compatible
 - ► LSST-specific DE implementation

State space approximation: Feature space

 $f_1(i, t)$:= slew time of the telescope from current direction to the i'th field direction at t,

 $f_2(i,t)$:= time since the last visit of the i'th field until t,

 $f_3(i,t)$:= altitude of the center of i'th field at t,

 $f_4(i,t)$:= hour angle of the center of i'th field at t,

 $f_5(i,t)$:= measured co-added depth of the i'th field up to t,

 $f_6(i,t)$:= time remaining for the i'th field to become effectively invisible, from t,

 $f_7(i,t)$:= sky brightness at the direction of i'th field at t,

 $f_8(i,t)$:= duration of the i'th field visibility for the rest of the current year,

 $f_9(i, t) := (n1(i, t), n2(i, t), ..., n6(i, t))$, a vector of 6 elements, where nk(i, t) is the number objects in the i'th field that belong to the science program k. There are 6 science programs:

 $f_{10}(t) = \{u,g,r,i,z,y\},$ filter in use at t,

 $f_{11}(i,t) \in \{0,1\}$, 1 if the i'th field is effectively covered by an unacceptable high air-mass, clouds, Moon, and all other temporarily covering objects at t, 0 otherwise.

Review Post 2015 All-hands meeting Future work • Mv questions

Controller structure

Possibility 1: Sophisticated secondary features + linear combination

- $F_1(i,t) \propto f_1(i,t)$
- $F_2(i,t) \propto f_5(i,t)$
- $F_3(i,t) \propto \alpha_1 \log(f_3(i,t)) + \alpha_2 BD(f_{10}(t)) \times f_3(i,t) + \alpha_3 \log(f_7(i,t))$

$$F_4(i,t) \propto \frac{\sum_{k=1}^6 n_k(i,t) \times \frac{IP_k}{\pi} \tan^{-1}(\frac{f_2(i,t) - UF_1_k}{UF_2_k} \times \frac{365}{f_8(i,t)} + \frac{\pi}{2})}{\sum_{k=1}^6 n_k(i,t)}$$

•

$$Cost(i,t) = \sum a_j \times F_j$$

➤ More knowledge, Less learning effort

Review

 Post 2015 All-hands meeting

Future work

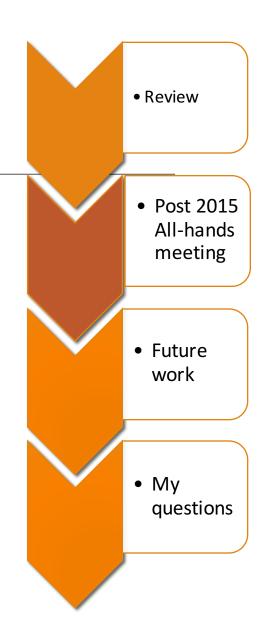
My questions

Controller structure

Possibility 2: raw (and just inclusive) features + sophisticated combination

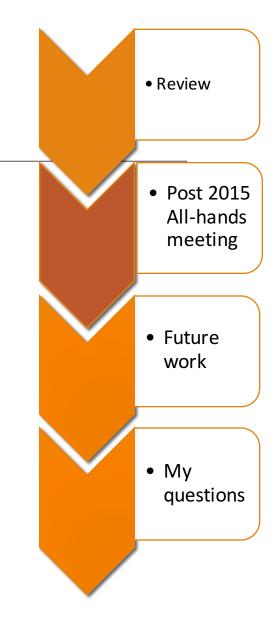
Example of sophisticated combination: Neural Network, CNN, Model reduction of extended binary features

Less knowledge, More learning effort

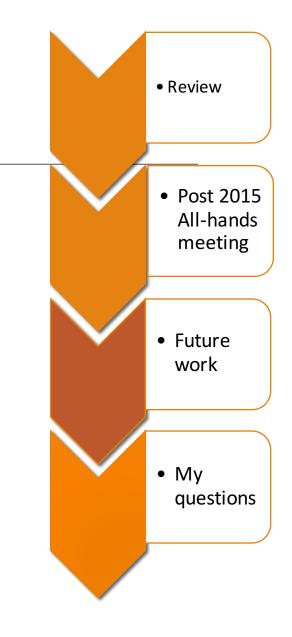

Possibility 3: A hybrid design

Review • Post 2015 All-hands meeting • Future work • My questions

Underlying dynamics


A perfect measurement of the current disturbances (coverage and sky brightness) is assumed.

>A perfect prediction of the coverage is assumed.


Implementation

- ➤ Piecewise constant features
- \circ $f_3(i,t)$:= altitude of the center of i'th field at t,
- o $f_4(i, t)$:= hour angle of the center of i'th field at t,
- >SQLite output compatible for long term scheduling
- ► LSST-specific DE implementation
- built-in vector optimization

(Near) Future work

- > Improve approximations
 - ➤ Approximation 1: State space approximation
 - > suggest a comprehensive feature pool and choose the best set of features
 - ➤ Approximation 2: Controller structure
 - implementation of the 2nd possibility design and compare to the 1st one
 - ➤ Approximation 3: Underlying dynamics
 - > remove the assumption of perfect predictability
- **≻**Implementation
 - >Input compatibility

My questions

- 1- Is there a unique and fixed partitioning of the sky and labeling of the fields in all simulations and datasets?
- 2- Can we substitute the air-mass constraint with an altitude threshold?
- 3- How to read OpSim SQLite Datasets, Tables of clouds and seeing?
- 4- How to decide a filter change?
- 5- What is the role of observation proposals?
- 6- What would be the best possible description of the temporary coverage?

• Review

Post 2015
 All-hands meeting

Future work

• My questions

Thank you