
Running LSST sims with 
Fireworks and Docker at 

NERSC

Debbie Bard
NERSC



Overview

• Running sims at NERSC.
• Why is this an interesting workflow problem for us?
• Fireworks + Shifter = great.
• Implementation is easy. 
• But what are you actually going to need?



NERSC
• We’re moving to a new purpose-built building at LBL in  the Fall.
• Shutting down old machines (Carver, Hopper). 
• Next supercomputer: Cori
• Cori Phase 1: September 2015

• ~1400 nodes, each with 2x16-core Haswell processors and 128GB. 
• “Burst Buffer” SSD sits between node and disk
• SLURM job scheduler 
• External connectivity from every node
• Containers/UDI support
• designed for data-intensive science

• Full Cori: summer 2016
• Knights Landing (Xeon Phi) processors
• will retain Cori P1 as “data partition”

https://www.nersc.gov/users/computational-systems/cori/ 

https://www.nersc.gov/users/computational-systems/cori/
https://www.nersc.gov/users/computational-systems/cori/


Motivation
• Sims motivation: 

• how to run at scale, on heterogenous distributed architectures? 
• Already demoed running sims in a docker container, drawing run 

config from an external database. 
• Fireworks is a nice way of automating this.

• Cori Phase 1 motivation: want to exercise data features of Cori P1 - this 
is an ideal use case. 

• containers.
• external access to the world from compute nodes.
• improved disk IO.
• workflow control.



Containing docker: “Shifter” 

• Docker has some issues in HPC
• security: users have access to root in the image!
• batch jobs need to run executable from image, not from 

user environment.
• Shifter is NERSC’s solution to these problems

• wraps a docker image. 
• Will run very easily with SLURM (Simple Linux Resource for 

Resource Management), the new NERSC job scheduling 
system. 

• UDI is a key “Data feature” of the new NERSC Cori system.
• Open Source.
• This is how we’ll run containers on HPC architectures. 

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2015/shifter-makes-container-based-hpc-a-breeze/ 

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2015/shifter-makes-container-based-hpc-a-breeze/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2015/shifter-makes-container-based-hpc-a-breeze/


Fireworks 

• Workflow engine designed for long-term 
distributed simulations 

• Materials Project, simulating 
properties of proposed compounds. 

• Used by groups at all DoE labs. 
• Dynamic workflow

• can modify behaviour of tasks down 
the line, based on output of previous 
jobs.

• Fault-detection routines
• re-run failed tasks.

• Easy to write scripts! 

https://pythonhosted.org/FireWorks/index.html 

https://pythonhosted.org/FireWorks/index.html
https://pythonhosted.org/FireWorks/index.html


Fireworks

• Launchpad
• MongoDB listing workflows 

(essentially just lists of compute 
tasks).

• Stores status of task, plus metadata.
• Trivial to add more tasks in the 

middle of production without 
disruption (this is not the case for sql 
database).

• Your compute node (“Fireworker”) 
requests a task from the Launchpad and 
runs it. 



Fireworks

• Complex workflows: can specify a 
sequence of tasks that are dependent on 
input from previous tasks. 

• e.g. could retain CatSim files at 
location they were generated, and 
only run PhoSim tasks on those files 
at same location (ditto for DM tasks).

• e.g. if a CatSim task generated a very 
bright star in a field, could specify 
where/how to run that particular case 
(or to discard it). 

• Basically, can specify task behaviour 
based on any MongoDB query. 



Fireworks, Shifter and PhoSim

• We want to run PhoSim inside a container:
• Launch container on your compute node.
• Container runs a FireWorks script that requests and runs a task from 

the Launchpad database.
• Container closes upon completion of the task. 

• In batch system at NERSC: 
• submit a shifter job (i.e. run the container on a batch node)
• that’s it! 

• job won’t query the Launchpad DB for which PhoSim job to run 
until it starts execution.

• Cori will have a dedicated Serial queue for running non-MPI jobs (like 
phosim)

• Currently: cannot run multiple executables per node on Edison.



Scaling up: Database issues

• 1000s of jobs querying one database will 
cause problems

• locking and concurrency control. 
• MongoDB (or other noSQL) can deal well 

with this
• sharding: distribute collection over 

multiple instances. Each instance is 
independant and uses own locks.  

• We’re currently fixing a similar issue at 
NERSC for material science sims. 



• 1000s of jobs hitting a disk would be a problem - need to write to local 
scratch and transfer

• PhoSim needs minimal modifications to do this.
• could try to bundle jobs so that one node pulls multiple chips from 

same exposure… worth the complication? 
• Where to transfer the data afterwards? 

• could scp fits somewhere at end of job
• could use data portal at production sites

• job-control DB would be given url, and a central job on data 
location could pull in files as they finish, or bundle them up into a 
regular Globus transfer (probably optimal)

• Cori P1 Burst Buffer might be useful...

Scaling up: Data issues



Test setup

• Docker image containing fireworks and phosim
• Batch (or interactive) job on Edison at NERSC (or my laptop, or wherever) 

asks the launchpad for the next job to run, and runs it. 
• Very simple example, but very easy to add complexity. 



Add jobs to launchpad with python script

add script task to 
Launchpad (DB).

make FireWorks 
task and workflow 
from command 
string.

command string 
for phosim job. 
This is run inside 
the container. 

define Launchpad 
(mongoDB) to 
which you’re going 
to push 
tasks/workflow.



“rocket launch” from a 
launchpad defined in 
“my_launchpad.yaml”

[aprun will become srun (new 
load manager for Cori).]

Job submission script

•  qsub -v SHIFTER=docker:djbard/fw-phosim:v0.4 qsub-shifter-single.sh

[needed to set these 
variables for running on 
Edison, not for Cori.]



Launchpad Definition

• my_launchpad.yaml defines DB interface:



Questions:

• Is there interest in this?
• What timescale will you want to run sim jobs?
• What volume of sims? 
• CatSim + PhoSim, I presume? 

• note that it’s easy to define a workflow of a CatSim task, followed by a 
PhoSim task. 

• + DM? 

• I plan to run this myself to test out some Cori Phase 1 features: are there 
useful amounts of sims you’ll need in the Fall/Winter?






