Python C++ interaction in the DM Software Stack

Tim Jenness

DMLT Meeting @ NCSA
May 20, 2015

DMLT May 2015 » NCSA

Non-Pythonic Interface m

[-~

Attributes don’t look like Python attributes.
Naming conventions don’t match PEP-8.

Constructors are scary mess of C++ signatures, not all of
which are relevant, and mostly lacking in documentation,
using *args.

Similarly, most methods are documented simply by showing C
++ API but lack the doxygen C++ docs.

Exceptions usually end up coming from C++ land. This is
particularly bad in constructors but also genuinely surprising
to a new user.

Objects tend to stringify (or repr()) in opaque ways referring
to swig. repr() output can’t be used to construct an object in
many cases.

Interoperability m

— Plays poorly with other python astronomy software
— Astropy coordinates and quantity might be useful
— PANDAS vs AFW table

— Build system surprisingly complicated for python programmer
(no “pip install Isst_apps”)

DMLT May 2015 e NCSA 3

Investigations m

Three schemes investigated:

— Write “shim” classes to hide the SWIG interfaces from the
user.

— Rewrite high level classes in Python

— Experiment with numba and cython in high performance
code.

DMLT May 2015 e NCSA

Shims m

For each C++ SWIG class, add new python class that mediates
calls to C++

e = geom.Extent(3,5)

print(e.x, e.y)

exp = image.Exposure(e, dtype=np.floaté64)
print(exp.bbox, bbox.area)

mi = exp.masked_image
var = mi.variance
var[0:2,3:5] = np.array([[1,2],[3,4]])

See https://github.com/Isst-dm/python-experiments

DMLT May 2015 e NCSA

Shims: thoughts m

Straightforward to add new classes
C++ still leaks through at times (especially with exceptions)

Every time C++ APl is modified the Python needs to be
changed to match

No scheme for dealing with documentation duplication (can it
be extracted from C++ doxygen source?)

Possible performance hit with all the extra function calls.

Could include mediation layer for translating AFW coordinates

(and others) and tables to Astropy and PANDAS so that public
Python interface looks more normal. Again, lots of overhead.

Pushing the C++ down m

[P —— e o~

The approach here is to take the large aggregate classes and
rewrite them in Python. When calling a C++ routine replace a
single object argument with explicit attributes of the object.

— Exposure was chosen as a good example.

— Exposure contains a Maskedlmage and an Exposurelnfo.
Exposurelnfo contains important items such as WCS and Filter
and CoaddInputs.

— A new demo class written that contains a Maskedlmage and
all the contents of Exposurelnfo

— Quite a lot of infrastructure needed to test the new interface
from Warping or Measurement layer so not yet tested.

X2|

Extent2l

Exgosure

Point2|
Maskedlmage ImageOrigin
Image f
ImageU
MaskU y 8
A ImageOrigin

Exposurelnfo

table.AmpInfoCatalog

CgmeraSvs
Box2I
Point2D
CamergPomt
Point2D

Point2DVector
—

Angle
cameraGeom.Detector

Orientation

AffineXYTrgnsform

AffineTransform

CameraTransformMa

CameraTransforms
__ _

DetectorType

CameraSysList

CameraSys
_

CgmeraSvs
Calib

DateTime

CoaddInputs table.ExposureCatalo

Filter FilterProperty

daf.base.PropertySet Eigen::Matrix2d
— I

daf.base.PropertyList

HnearTransform
AffineTrgnsform J
k \ Extent2D
Wcs Point2D
—
Coord
Extent2|
Point2D
Angle
Box2l|
Psf.Image
Point2|
math.Kernel
_ detection.Psf Extent2l
Point2D
Function2DList
(.Zolor

Point2D

gcomtellipses.Quadrupole Quadrupole.Matrix

Downward Pressure m

— This all should work in theory

— But how to avoid “Fortran in C++”: very large argument lists
passed through to the C++ layer.

— Fundamental classes like Extent, Point and Box may be better
off existing in both worlds.

DMLT May 2015 e NCSA

Python Performance enhancements m—

g e -

— What if the default position was always to use Python unless
we needed to go faster for a specific bit of number crunching?

— Is there a middle ground between slow python and C++?
— Cython and numba are interesting approaches

— Cython is a very mature system that allows python-like
code with type annotations to be compiled to C. Widely

used in the Python community. Allows trivial access to C
code.

— Numba is a Jit compiler using llvm. Relatively immature
(upgrade often). No type annotations. Just use @jit
decorator. Magic.

10

Convolution m

[P —— e o~

AFW convolve.py has a handy “pure python” convolver to
compare against the AFW C++ compiler version.

Numba and Cython implementations were written (with the

tight loop factored out and the numpy reduce calls explicitly
turned in to loops)

C++ 3000 times faster than Python
C++ 15 times faster than Cython
C++ 2 times faster than numba

Numba was impressive given the lack of work involved
(noting that allocating numpy buffers can’t be done)

Needs to be tested with a spatially variable kernel (a lot of
kernel infrastructure needs to be ported for a good test).

11

@jit(nopython=True)
def runRefConvolvelitLoop(ignore_zero_pix, retRowRef, retColRef, numRows, numCols, kWidth, kHeight,
kImArr, image, variance, mask, retImage, retVariance, retMask):
retRow = retRowRef
for inRowBeg in range(numRows):
inRowEnd = inRowBeg + kHeight
retCol = retColRef
for inColBeg in range(numCols):
inColEnd = inColBeg + kWidth
subImage = image[inColBeg:inColEnd, inRowBeg:inRowEnd]
subVariance = variance[inColBeg:inColEnd, inRowBeg:inRowEnd]
subMask = mask[inColBeg:inColEnd, inRowBeg:inRowEnd]
sum = 0.9
varsum = 0.0
outmask = @
for i in range(kWidth):
for j in range(kHeight):
sum += subImage[i, j] * kImArr[i, j]
varsum += subVariance[i, j] * kImArr[i, j] * kImArr[i, j]
if ignore_zero_pix:
if kImArr[i, j] != O:
outmask |= subMask[i, j]

else:
outmask |= subMask[i,j]
retImage[retCol, retRow] = sum
retVariance[retCol, retRow] = varsum
retMask[retCol, retRow] = outmask
retCol += 1
retRow += 1
return

Thoughts on numba/cython m

[P —— e o~

— Numba does feel like magic: some thought is required to
write your python code in a manner amenable to the Jit
compiler (things go slower if you don’t do it right).

— No type declarations!
— Multi-CPU + GPU support for numba costs serious money

— Numba has a reputation for being a pain to build if you are
not working with Anaconda.

— Cython is a “safe pair of hands” and it’s fairly obvious what is
going on and how to call out to hand-crafted C.

— Cython can generate functions callable from cython
without Python object overhead but also from Python.

— Now uses MemoryViews so not reliant on numpy.
— Where are we going to be relying on threads?

13

What are we? m

[P —— e o~

Are we a Python project with some C/C++ in the hot spots?
Are we a C++ project with some Python glue?

s it desirable to move the C++ boundary deeper into the
stack?

Do we know what really needs to be in C++7?

Can we stop the “C++ first” default approach where
everything is written in C++ “just in case”.

Are we building a data reduction system that will be
embraced by the community or one that will scare people off
with the difficult learning curve? Astropy does not have the
best algorithms in many cases but it’s good enough for a lot of
people.

How brave are we?

14

Python C++ interaction in the DM Software Stack

Tim Jenness

DMLT Meeting @ NCSA
May 20, 2015

DMLT May 2015 • NCSA

‹#›

DMLT May 2015 • NCSA

Non-Pythonic Interface

Attributes don’t look like Python attributes.

Naming conventions don’t match PEP-8.

Constructors are scary mess of C++ signatures, not all of which are relevant, and mostly lacking in documentation, using *args.

Similarly, most methods are documented simply by showing C++ API but lack the doxygen C++ docs.

Exceptions usually end up coming from C++ land. This is particularly bad in constructors but also genuinely surprising to a new user.

Objects tend to stringify (or repr()) in opaque ways referring to swig. repr() output can’t be used to construct an object in many cases.

‹#›

DMLT May 2015 • NCSA

2

Interoperability

Plays poorly with other python astronomy software

Astropy coordinates and quantity might be useful

PANDAS vs AFW table

Build system surprisingly complicated for python programmer (no “pip install lsst_apps”)

‹#›

DMLT May 2015 • NCSA

Investigations

Three schemes investigated:

Write “shim” classes to hide the SWIG interfaces from the user.

Rewrite high level classes in Python

Experiment with numba and cython in high performance code.

‹#›

DMLT May 2015 • NCSA

Shims

For each C++ SWIG class, add new python class that mediates calls to C++

e = geom.Extent(3,5)

print(e.x, e.y)

exp = image.Exposure(e, dtype=np.float64)

print(exp.bbox, bbox.area)

mi = exp.masked_image

var = mi.variance

var[0:2,3:5] = np.array([[1,2],[3,4]])

See https://github.com/lsst-dm/python-experiments

‹#›

DMLT May 2015 • NCSA

Shims: thoughts

Straightforward to add new classes

C++ still leaks through at times (especially with exceptions)

Every time C++ API is modified the Python needs to be changed to match

No scheme for dealing with documentation duplication (can it be extracted from C++ doxygen source?)

Possible performance hit with all the extra function calls.

Could include mediation layer for translating AFW coordinates (and others) and tables to Astropy and PANDAS so that public Python interface looks more normal. Again, lots of overhead.

‹#›

DMLT May 2015 • NCSA

Pushing the C++ down

The approach here is to take the large aggregate classes and rewrite them in Python. When calling a C++ routine replace a single object argument with explicit attributes of the object.

Exposure was chosen as a good example.

Exposure contains a MaskedImage and an ExposureInfo. ExposureInfo contains important items such as WCS and Filter and CoaddInputs.

A new demo class written that contains a MaskedImage and all the contents of ExposureInfo

Quite a lot of infrastructure needed to test the new interface from Warping or Measurement layer so not yet tested.

‹#›

DMLT May 2015 • NCSA

‹#›

DMLT May 2015 • NCSA

Downward Pressure

This all should work in theory

But how to avoid “Fortran in C++”: very large argument lists passed through to the C++ layer.

Fundamental classes like Extent, Point and Box may be better off existing in both worlds.

‹#›

DMLT May 2015 • NCSA

Python Performance enhancements

What if the default position was always to use Python unless we needed to go faster for a specific bit of number crunching?

Is there a middle ground between slow python and C++?

Cython and numba are interesting approaches

Cython is a very mature system that allows python-like code with type annotations to be compiled to C. Widely used in the Python community. Allows trivial access to C code.

Numba is a Jit compiler using llvm. Relatively immature (upgrade often). No type annotations. Just use @jit decorator. Magic.

‹#›

DMLT May 2015 • NCSA

Convolution

AFW convolve.py has a handy “pure python” convolver to compare against the AFW C++ compiler version.

Numba and Cython implementations were written (with the tight loop factored out and the numpy reduce calls explicitly turned in to loops)

C++ 3000 times faster than Python

C++ 15 times faster than Cython

C++ 2 times faster than numba

Numba was impressive given the lack of work involved (noting that allocating numpy buffers can’t be done)

Needs to be tested with a spatially variable kernel (a lot of kernel infrastructure needs to be ported for a good test).

‹#›

DMLT May 2015 • NCSA

‹#›

DMLT May 2015 • NCSA

Thoughts on numba/cython

Numba does feel like magic: some thought is required to write your python code in a manner amenable to the Jit compiler (things go slower if you don’t do it right).

No type declarations!

Multi-CPU + GPU support for numba costs serious money

Numba has a reputation for being a pain to build if you are not working with Anaconda.

Cython is a “safe pair of hands” and it’s fairly obvious what is going on and how to call out to hand-crafted C.

Cython can generate functions callable from cython without Python object overhead but also from Python.

Now uses MemoryViews so not reliant on numpy.

Where are we going to be relying on threads?

‹#›

DMLT May 2015 • NCSA

What are we?

Are we a Python project with some C/C++ in the hot spots?

Are we a C++ project with some Python glue?

Is it desirable to move the C++ boundary deeper into the stack?

Do we know what really needs to be in C++?

Can we stop the “C++ first” default approach where everything is written in C++ “just in case”.

Are we building a data reduction system that will be embraced by the community or one that will scare people off with the difficult learning curve? Astropy does not have the best algorithms in many cases but it’s good enough for a lot of people.

How brave are we?

‹#›

DMLT May 2015 • NCSA

image3.jpeg

image4.png

image5.png

Maskedimage

Exposure

Exposurelnfo

Box2|

Extent2l

Point2|

Image

MaskU

cameraGeom.Detector

Calib

CoaddInputs

Filter

daf.base.PropertySet

Wes

detection.Psf

ImageOrigin
ImageU
ImageOrigin
table.AmplinfoCatalog
Box2|
CameraPoint
Point2DVector
Orientation
CameraTransformMap
DetectorType
CameraSys
DateTime
table,ExposureCatalog
FilterPropert
Eigen::Matrix2d
daf.base.PropertyList
AffineTransform
Point2D
Coord
Extent2l
Point2D
Angle
Psf.Image
math.Kernel
Point2D
Color

geom.ellipses.Quadrupole

CameraSys
Point2D
Point2D

Angle
AffineXYTransform
CameraTransforms

CameraSysList

CameraSys

LinearTransform

Extent2D

Box2|
Point2|
Extent2l

Function2DList

Quadrupole.Matrix

AffineTransform

Point2D

image6.png

@jit(nopython=True)
def runRefConvolveJitLoop(ignore_zero_pix, retRowRef, retColRef, numRows, numCols, kWidth, kHeight,
kImArr, image, variance, mask, retImage, retVariance, retMask):
retRow = retRowRef
for inRowBeg in range(numRows):
inRowEnd = inRowBeg + kHeight
retCol = retColRef
for inColBeg in range(numCols):
inColEnd = inColBeg + kWidth
subImage = image[inColBeg:inColEnd, inRowBeg:inRowEnd]
subVariance = variance[inColBeg:inColEnd, inRowBeg:inRowEnd]
subMask = mask[inColBeg:inColEnd, inRowBeg:inRowEnd]
sum = 0.0
varsum = 0.0
outmask = @
for i in range(kWidth):
for j in range(kHeight):
sum += subImage[i, j] * kImArr[i, j]
varsum += subVariance[i, j] * kImArr[i, j] * kImArr[i, j]
if ignore_zero_pix:
if kImArr[i, j] != 0@:
outmask |= subMask[i, j]
else:
outmask |= subMask[i,j]
retImage[retCol, retRow] = sum
retVariance[retCol, retRow] = varsum
retMask[retCol, retRow] = outmask
retCol += 1
retRow += 1
return

image1.jpeg

image2.png

