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Non-Pythonic Interface m

[ -~

Attributes don’t look like Python attributes.
Naming conventions don’t match PEP-8.

Constructors are scary mess of C++ signatures, not all of
which are relevant, and mostly lacking in documentation,
using *args.

Similarly, most methods are documented simply by showing C
++ API but lack the doxygen C++ docs.

Exceptions usually end up coming from C++ land. This is
particularly bad in constructors but also genuinely surprising
to a new user.

Objects tend to stringify (or repr()) in opaque ways referring
to swig. repr() output can’t be used to construct an object in
many cases.




Interoperability m

— Plays poorly with other python astronomy software
— Astropy coordinates and quantity might be useful
— PANDAS vs AFW table

— Build system surprisingly complicated for python programmer
(no “pip install Isst_apps”)
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Investigations m

Three schemes investigated:

— Write “shim” classes to hide the SWIG interfaces from the
user.

— Rewrite high level classes in Python

— Experiment with numba and cython in high performance
code.
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Shims m

For each C++ SWIG class, add new python class that mediates
calls to C++

e = geom.Extent(3,5)

print(e.x, e.y)

exp = image.Exposure(e, dtype=np.floaté64)
print(exp.bbox, bbox.area)

mi = exp.masked_image
var = mi.variance
var[0:2,3:5] = np.array([[1,2],[3,4]])

See https://github.com/Isst-dm/python-experiments
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Shims: thoughts m

Straightforward to add new classes
C++ still leaks through at times (especially with exceptions)

Every time C++ APl is modified the Python needs to be
changed to match

No scheme for dealing with documentation duplication (can it
be extracted from C++ doxygen source?)

Possible performance hit with all the extra function calls.

Could include mediation layer for translating AFW coordinates

(and others) and tables to Astropy and PANDAS so that public
Python interface looks more normal. Again, lots of overhead.




Pushing the C++ down m

[P —— e o~

The approach here is to take the large aggregate classes and
rewrite them in Python. When calling a C++ routine replace a
single object argument with explicit attributes of the object.

— Exposure was chosen as a good example.

— Exposure contains a Maskedlmage and an Exposurelnfo.
Exposurelnfo contains important items such as WCS and Filter
and CoaddInputs.

— A new demo class written that contains a Maskedlmage and
all the contents of Exposurelnfo

— Quite a lot of infrastructure needed to test the new interface
from Warping or Measurement layer so not yet tested.
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Downward Pressure m

— This all should work in theory

— But how to avoid “Fortran in C++”: very large argument lists
passed through to the C++ layer.

— Fundamental classes like Extent, Point and Box may be better
off existing in both worlds.
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Python Performance enhancements m—

g e -

— What if the default position was always to use Python unless
we needed to go faster for a specific bit of number crunching?

— Is there a middle ground between slow python and C++?
— Cython and numba are interesting approaches

— Cython is a very mature system that allows python-like
code with type annotations to be compiled to C. Widely

used in the Python community. Allows trivial access to C
code.

— Numba is a Jit compiler using llvm. Relatively immature
(upgrade often). No type annotations. Just use @jit
decorator. Magic.
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Convolution m
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AFW convolve.py has a handy “pure python” convolver to
compare against the AFW C++ compiler version.

Numba and Cython implementations were written (with the

tight loop factored out and the numpy reduce calls explicitly
turned in to loops)

C++ 3000 times faster than Python
C++ 15 times faster than Cython
C++ 2 times faster than numba

Numba was impressive given the lack of work involved
(noting that allocating numpy buffers can’t be done)

Needs to be tested with a spatially variable kernel (a lot of
kernel infrastructure needs to be ported for a good test).
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@jit(nopython=True)
def runRefConvolvelitLoop(ignore_zero_pix, retRowRef, retColRef, numRows, numCols, kWidth, kHeight,
kImArr, image, variance, mask, retImage, retVariance, retMask):
retRow = retRowRef
for inRowBeg in range(numRows):
inRowEnd = inRowBeg + kHeight
retCol = retColRef
for inColBeg in range(numCols):
inColEnd = inColBeg + kWidth
subImage = image[inColBeg:inColEnd, inRowBeg:inRowEnd]
subVariance = variance[inColBeg:inColEnd, inRowBeg:inRowEnd]
subMask = mask[inColBeg:inColEnd, inRowBeg:inRowEnd]
sum = 0.9
varsum = 0.0
outmask = @
for i in range(kWidth):
for j in range(kHeight):
sum += subImage[i, j] * kImArr[i, j]
varsum += subVariance[i, j] * kImArr[i, j] * kImArr[i, j]
if ignore_zero_pix:
if kImArr[i, j] != O:
outmask |= subMask[i, j]

else:
outmask |= subMask[i,j]
retImage[retCol, retRow] = sum
retVariance[retCol, retRow] = varsum
retMask[retCol, retRow] = outmask
retCol += 1
retRow += 1
return



Thoughts on numba/cython m
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— Numba does feel like magic: some thought is required to
write your python code in a manner amenable to the Jit
compiler (things go slower if you don’t do it right).

— No type declarations!
— Multi-CPU + GPU support for numba costs serious money

— Numba has a reputation for being a pain to build if you are
not working with Anaconda.

— Cython is a “safe pair of hands” and it’s fairly obvious what is
going on and how to call out to hand-crafted C.

— Cython can generate functions callable from cython
without Python object overhead but also from Python.

— Now uses MemoryViews so not reliant on numpy.
— Where are we going to be relying on threads?
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What are we? m
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Are we a Python project with some C/C++ in the hot spots?
Are we a C++ project with some Python glue?

s it desirable to move the C++ boundary deeper into the
stack?

Do we know what really needs to be in C++7?

Can we stop the “C++ first” default approach where
everything is written in C++ “just in case”.

Are we building a data reduction system that will be
embraced by the community or one that will scare people off
with the difficult learning curve? Astropy does not have the
best algorithms in many cases but it’s good enough for a lot of
people.

How brave are we?
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Non-Pythonic Interface

Attributes don’t look like Python attributes.

Naming conventions don’t match PEP-8.

Constructors are scary mess of C++ signatures, not all of which are relevant, and mostly lacking in documentation, using *args.

Similarly, most methods are documented simply by showing C++ API but lack the doxygen C++ docs.

Exceptions usually end up coming from C++ land. This is particularly bad in constructors but also genuinely surprising to a new user.

Objects tend to stringify (or repr()) in opaque ways referring to swig. repr() output can’t be used to construct an object in many cases. 
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Interoperability

Plays poorly with other python astronomy software 

Astropy coordinates and quantity might be useful

PANDAS vs AFW table



Build system surprisingly complicated for python programmer (no “pip install lsst_apps”)
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Investigations

Three schemes investigated:



Write “shim” classes to hide the SWIG interfaces from the user.

Rewrite high level classes in Python

Experiment with numba and cython in high performance code.
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Shims

For each C++ SWIG class, add new python class that mediates calls to C++



e = geom.Extent(3,5)

print(e.x, e.y)

exp = image.Exposure(e, dtype=np.float64)

print(exp.bbox, bbox.area)



mi = exp.masked_image

var = mi.variance

var[0:2,3:5] = np.array([[1,2],[3,4]])



See https://github.com/lsst-dm/python-experiments
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Shims: thoughts

Straightforward to add new classes

C++ still leaks through at times (especially with exceptions)

Every time C++ API is modified the Python needs to be changed to match

No scheme for dealing with documentation duplication (can it be extracted from C++ doxygen source?)

Possible performance hit with all the extra function calls.

Could include mediation layer for translating AFW coordinates (and others) and tables to Astropy and PANDAS so that public Python interface looks more normal. Again, lots of overhead.
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Pushing the C++ down

The approach here is to take the large aggregate classes and rewrite them in Python. When calling a C++ routine replace a single object argument with explicit attributes of the object.



Exposure was chosen as a good example.

Exposure contains a MaskedImage and an ExposureInfo. ExposureInfo contains important items such as WCS and Filter and CoaddInputs.

A new demo class written that contains a MaskedImage and all the contents of ExposureInfo

Quite a lot of infrastructure needed to test the new interface from Warping or Measurement layer so not yet tested.
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Downward Pressure

This all should work in theory

But how to avoid “Fortran in C++”: very large argument lists passed through to the C++ layer.

Fundamental classes like Extent, Point and Box may be better off existing in both worlds.
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Python Performance enhancements

What if the default position was always to use Python unless we needed to go faster for a specific bit of number crunching?

Is there a middle ground between slow python and C++?

Cython and numba are interesting approaches

Cython is a very mature system that allows python-like code with type annotations to be compiled to C. Widely used in the Python community. Allows trivial access to C code.

Numba is a Jit compiler using llvm. Relatively immature (upgrade often). No type annotations. Just use @jit decorator. Magic.
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Convolution

AFW convolve.py has a handy “pure python” convolver to compare against the AFW C++ compiler version.

Numba and Cython implementations were written (with the tight loop factored out and the numpy reduce calls explicitly turned in to loops)

C++ 3000 times faster than Python

C++ 15 times faster than Cython

C++ 2 times faster than numba

Numba was impressive given the lack of work involved (noting that allocating numpy buffers can’t be done)

Needs to be tested with a spatially variable kernel (a lot of kernel infrastructure needs to be ported for a good test).
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Thoughts on numba/cython

Numba does feel like magic: some thought is required to write your python code in a manner amenable to the Jit compiler (things go slower if you don’t do it right).

No type declarations!

Multi-CPU + GPU support for numba costs serious money

Numba has a reputation for being a pain to build if you are not working with Anaconda.

Cython is a “safe pair of hands” and it’s fairly obvious what is going on and how to call out to hand-crafted C.

Cython can generate functions callable from cython without Python object overhead but also from Python.

Now uses MemoryViews so not reliant on numpy.

Where are we going to be relying on threads?
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What are we?

Are we a Python project with some C/C++ in the hot spots?

Are we a C++ project with some Python glue?

Is it desirable to move the C++ boundary deeper into the stack?

Do we know what really needs to be in C++?

Can we stop the “C++ first” default approach where everything is written in C++ “just in case”.

Are we building a data reduction system that will be embraced by the community or one that will scare people off with the difficult learning curve? Astropy does not have the best algorithms in many cases but it’s good enough for a lot of people.

How brave are we?
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@jit(nopython=True)
def runRefConvolveJitLoop(ignore_zero_pix, retRowRef, retColRef, numRows, numCols, kWidth, kHeight,
kImArr, image, variance, mask, retImage, retVariance, retMask):
retRow = retRowRef
for inRowBeg in range(numRows):
inRowEnd = inRowBeg + kHeight
retCol = retColRef
for inColBeg in range(numCols):
inColEnd = inColBeg + kWidth
subImage = image[inColBeg:inColEnd, inRowBeg:inRowEnd]
subVariance = variance[inColBeg:inColEnd, inRowBeg:inRowEnd]
subMask = mask[inColBeg:inColEnd, inRowBeg:inRowEnd]
sum = 0.0
varsum = 0.0
outmask = @
for i in range(kWidth):
for j in range(kHeight):
sum += subImage[i, j] * kImArr[i, j]
varsum += subVariance[i, j] * kImArr[i, j] * kImArr[i, j]
if ignore_zero_pix:
if kImArr[i, j] != 0@:
outmask |= subMask[i, j]
else:
outmask |= subMask[i,j]
retImage[retCol, retRow] = sum
retVariance[retCol, retRow] = varsum
retMask[retCol, retRow] = outmask
retCol += 1
retRow += 1
return
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