
The LCOGT Network 
Scheduler

Lessons we learnt the hard way

Eric Saunders
Software Team Lead
Las Cumbres Observatory Global Telescope



What is LCOGT?

● A non-profit organisation
● A professional 

observatory
● A network of 

longitudinally-spaced 
optical telescopes

● An ‘obvious’ idea
● A unique instrument for 

the time domain
● A new frontier in 

telescope scheduling

2



Keeping you in the dark

3



Cerro Telolo: 3 x 1m

4



Network design philosophy (1)

● A single global observing abstraction
● Identical instrumentation
● Redundant resources

○ Cost-effective
○ Mitigates technical failures at site
○ Allows concurrent observing

5



Network design philosophy (2)
● Spectra and imaging at every site
● Fully robotic operation
● Tolerant to network outages
● Layered software intelligence
● Globally scheduled

6



The (astronomy) problem we solve

● Accept requests from many users, at any 
time, from anywhere with an internet 
connection

● Support many different kinds of science
● Be highly responsive to new input
● Utilise the full potential of a telescope 

network
● Be a killer follow-up observing engine

7



LCOGT v1.0 capabilities

● Globally optimised observation placement
● Simultaneous and cross-site observing
● Automatic weather rescheduling
● Automatic hard constraint enforcement
● Automatic rescheduling of unsuccessful observations
● Target of opportunity observations, placed on-sky within 

15 minutes of submission
● Human and machine request interfaces
● Cadence-driven, multi-site sequences
● Support for solar-system objects
● Low-dispersion spectrographs at both 2m sites
● Pseudo-real-time interface for education users

8



Architecture Overview

9



Robotic observing - a hierarchy

1. Scripted schedule (simplest)
2. Pre-computed schedule with human tweaks
3. “Locally optimal” dispatch scheduling
4. Lookahead solve (usually nightly)
5. Multi-telescope, multi-night global solve, with 

fast recomputes (adaptive network 
scheduling)

10



Can you formalise?

● Astronomical scheduling - it’s not very good
● Telescope scheduling has no direct analog 

in classical CS or OR, but they are way 
ahead of us

● Formalise your problem, and you can 
leverage existing work

● Clearly distinguish between astronomy, 
abstraction, and implementation

11



What are your goals?

● Be very clear about goals
● Science? Efficiency? Airmass? Good 

seeing? Telescope wear? Completing 
cadences? Being fair?

● Not everything cool is feasible
● Desirable goals often conflict, sometimes 

irreconcilably
● Scheduling (1): the art of deciding who loses

12



Make simulations!

● Simulation framework is time well-spent
● Keep it modular (you will need to revise it)
● Don’t over-simulate things that don’t matter 

(think spherical cows)
● Simulation is only as good as its input and 

assumptions
● Evaluation of schedule quality (simulated or 

real) is hard

13



Managing uncertainty

● Scheduling (2): the art of deciding amidst 
uncertainty

● Dealing with uncertainty is hard
● Dealing with correlated uncertainty is very 

hard
○ e.g. statistical variations in weather
○ e.g. weird user submission behaviour

● Evaluating behaviour post-run with perfect 
hindsight is tricky

14



Many flavours of constraints and 
dependencies

● a-priori constraint: e.g. visibility, airmass, 
moon phase

● real-time constraint: e.g. seeing
● scheduling-time dependency

○ one request depends on another
○ one time depends on another (cadences)

● post-completion dependency
○ subsequent scheduling depends on post-completion 

function (reactive scheduling)

15



Common beliefs which are wrong

● local optimisation implies global optimisation!
● solving very large NP scheduling problems is 

impossible (airlines do it by magic)

● being fast enough to recompute an entire 
schedule in real-time is impossible

● science “requirements” (e.g. cadence goals, 
seeing) are clear, hard lines

● if you could just make your function a tiny bit 
cleverer, it will make people happy

16



Solving hard problems fast

● Large discrete optimization problems are 
usually solved in standard ways
○ linear/integer/mixed integer programming
○ constraint programming
○ a hybrid approach (e.g. branch and bound + 

constraints)
● Solving != exhaustively prove
● Solving == good enough
● Take a free grad course: Discrete 

Optimization (Coursera/University of 
Melbourne)

17

https://www.coursera.org/course/optimization
https://www.coursera.org/course/optimization


The evil of multi-objective functions

● heuristic by nature
● therefore messy, arbitrary and unsatisfying
● trade off one thing for another
● tend to “smear” outcomes
● simple objectives are rarely satisfactory
● complex functions tend towards making 

everyone equally unhappy
● if you have to do this

○ keep it as simple as you can
○ exhaustive simulation is essential

18



The human element

● justifying complex robotic scheduling to 
users/stakeholders is hard
○ top question: “why didn’t observation X happen”?

● people will attempt to twiddle even the most 
carefully nuanced scheduler, by hand

● humans need to build a mental model of 
your process before they will trust you

● stability in the continuum of schedules is 
highly desirable

19



The many flavours of cadence
"Observe 75% of this variable star's period" (exact, abstract by phase)

"Equally space these 10 observations somewhere good" (exact, abstract by space)

"Complete all 10 observations of this SN, or give up" (exact, all)

"Make a best effort to obtain 10 obs, but less is better than nothing" (exact, most)

"Make at least 5/10 observations, or give up" (exact, n of N)

"Make 4 observations, a day apart, somewhere good" (approx, abstract)

"Make 4 observations, a day apart, each +/- 6 hours" (approx, jitter)

"Make 10 observations, each between 3 and 6 hours apart" (approx, min/max)

"Complete all 10 observations of this SN, or give up" (approx, all)

"Make a best effort to obtain 10 obs, but less is better than nothing" (approx, most)

"Make at least 5/10 observations, or give up" (approx, n of N)

"If an observation failed, observe again as soon as possible" (approx, continue on 
fail)

“Observe this target 20 times, with logarithmic spacing” (non-linear cadence)

20



Random grab-bag

● retrying on failures has multiple subtleties
● state gets complicated quickly

○ hard to understand
○ expensive to maintain and fix

● automated tests (unit, integration) are 
essential if you want to improve safely

● build modularity everywhere: you won’t get 
this right

● ToOs are a pain, and need special 
consideration

21



Main takeaways
● It is possible to solve very large scheduling problems 

quickly, with the right formalism
● What do you want?
● Do simulations!
● It is not sensible to optimise everything
● Uncertainty, multi-objective functions, fast 

recomputes, cadences etc. are hard problems
● How people perceive your stuff is important
● The output of a clever scheduler will be beyond your 

understanding - good metrics are crucial

22



Questions?

23



Identifying the formal problem

● Decomposed the problem
● Expressed the problem formally
● Checked it hadn’t been solved
● Published the formalism (the telescope 

network scheduling problem), for others to 
attack

● To find a practical solution, devised various 
approximate transformations into problems 
that can be solved with known techniques

24



Common features of the formal 
problem

Four key phrases for literature searches:
● Interval scheduling (non-overlapping 

discrete time windows)
● Slack (flexible start/end times)
● Multi-resource problem (concurrent, not 

interchangeable)
● Scheduling-time dependencies (logical 

connectors)

25



Astronomy by Intersection

Moon distance or other a priori constraints 
would be applied in the same way

26


