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Simple Optimization Problem—Unconstrained

max
x∈Rn

f (x)

The function f (x) is called the objective function.

If f is smooth, take the gradient and set it to zero. Solve for x.

If f is strictly concave, there is only one unique place x∗ where the gradient vanishes.
It’s optimal!

Here’s a trivial optimization problem. Suppose that f (x) is a linear function: f (x) = cTx
for some vector c. Then, solution is infinity if c 6= 0 and it is zero otherwise.
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Slightly Harder—Linear Objective and Constraints

These problems are called linear programming (LP) problems.

Here’s an LP in standard form:

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n

In general, constraints can be equalities or inequalities.

If all constraints are equalities, then the problem is again trivial.

Linear programming problems can be solved quickly.

If m ≈ n, then one can expect to solve an LP in about n3 time.

If the matrix A = {aij} of coefficients is sparse then one can expect to solve the problem
more quickly.

It is not uncommon to solve sparse problems with a million variables in a few hours.
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Going Nonlinear

maximize f (x)

subject to gi(x)≤ 0 i = 1, 2, . . . ,mineq

hi(x) = 0 j = 1, 2, . . . ,meq,

If f (x) is concave, each gi(x) is convex, and each hi(x) is affine (constant plus linear), then
the problem is called convex.

For convex problems, a locally optimal solution is globally optimal.

Convex problems are about the same difficulty as LP.

If the problem is not convex, then there can be local optima that are not globally optimal.

Sometimes this is okay since the solution found will generally be close to an initial estimate
provided by the user.

It’s not uncommon for the user to have a good idea for an initial estimate.

Finding locally optimal solutions to nonconvex problems is not any harder than solving an
LP—about n3 complexity.
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Global vs. Local Solutions

As explained on the previous slide, local solutions near to a supplied starting guess can be
found “quickly”.

Finding the globally optimal solution is vastly more time consuming.

In practice, global optimization is limited to cases involving just a small number of variables.
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Going Integer

In management-type (and other) problems, it is often the case that an LP has an extra
condition that some or all of the variables must be integer valued.

Such problems are called integer programming (IP) problems:

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n

xj ∈ Z ←integers j = 1, 2, . . . , n.

The worst case complexity of these problems is exponential—i.e., 2n.

That’s much worse than the n3 for LP.

However, because these problems are so common and so important, lots of work has gone
into developing solvers that work pretty well on average.

In practice, it is often possible to solve an IP with a few thousand variables in a few hours
on a modern computer. But, it depends greatly on the problem instance.
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Example: Traveling Salesman Problem

A salesman wishes to visit each of n cities and return home.

Let xij be one if city j is visited immediately after city i (zero otherwise).

Let ti denote where in the order of visits city i is visited (i.e., ti = 3 means that the i-th city
is the third city visited on the tour).

Letting dij denote the distance from i to j, the integer programming problem is:

minimize
∑
i,j

dijxij

subject to
∑
j

xij = 1, i = 0, 1, . . . , n− 1,∑
i

xij = 1, j = 0, 1, . . . , n− 1,

xij ∈ {0, 1},←integers i, j = 0, 1, . . . , n− 1,

tj ≥ ti + 1− n(1− xij), i ≥ 0, j ≥ 1, i 6= j,

t0 = 0,

ti ∈ {0, 1, 2, . . .}←more integers i = 0, 1, . . . , n− 1.
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Campaign Tour Through Iowa

Touring Iowa

(c) W.J. Cook, A.L. Kornhauser, and R.J. Vanderbei
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The TSP went viral (again) on the web a few days ago:
http://www.washingtonpost.com/blogs/wonkblog/wp/2015/03/05/what-if-americas-zip-codes-were-one-big-game-of-connect-the-dots/

http://www.washingtonpost.com/blogs/wonkblog/wp/2015/03/10/a-data-genius-computes-the-ultimate-american-road-trip/
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Bang-Bang Solutions

Often the integrality constraints are in fact 0 / 1 constraints; i.e., the variables are binary.

In this case, sometimes the LP-relaxation automatically produces a binary solution.

Such solutions are called bang-bang solutions in the “control” literature.

My favorite example is the pupil-mask design problem for producing a star psf that has a
very dark section very close to the central lobe of the psf.

This problem is infinite dimensional because the pupil of the telescope is a continuum.

Discretizing the pupil into pixels makes it into a very large (but finite dimensional) linear
optimization problem.

Each pixel is then allowed to be some level of “gray” varying between black (opaque) and
white (transparent). In other words, we are designing an apodized filter.

Unfortunately, an apodized filter cannot be made with sufficient precision to achieve the
contrast necessary to image exoplanets.

But, a binary mask would work.

It turns out that the LP-relaxation automatically produces a binary mask...
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AFTA/WFIRST Pupil Mask

Originally, five design concepts were proposed.
Our shaped pupil concept (shown here) was selected.
The high-contrast imaging system is being built.
The telescope will launch sometime mid 2020’s.
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First Thoughts on Scheduling LSST
Let xjk be a binary variable whose value is 1 if target j is the k-th object visited.
Let tj denote the time at which target j is visited.
Let uj denote the net “outflow” for target j.

minimize
∑
i,j

dij(tj)xij ←time/desirability of going from i to j (nonlinear!)

subject to
∑
i6=j

xij −
∑
k 6=j

xjk = uj, j = 1, . . . , n− 1,∑
j

uj = 1, j = 0, 1, . . . , n− 1,∑
i,j

xij ≥ num targets, j = 0, 1, . . . , n− 1,

u0 = −1,

tj =
∑
i

(ti + ∆tij)xij

t0 = 0

xij and uj ∈ {0, 1},←integers i, j = 0, 1, . . . , n− 1,

plus constraints about cadence and weather. . .

This looks like a (generalized) network flow problem. Their solutions are often bang-bang.
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One Objective vs. Many

In most real-world problems, it is not clear what is the most appropriate objective function.

In portfolio selection (from finance), Markowitz won the Nobel prize for introducing the
important trade-off between minimizing risk and maximizing reward.

In the high-contrast imaging problem, there are many competing objectives: one could

• maximize the amount of light that gets past the mask, or

• minimize the inner-working angle in the image plane, or

• minimize the amount of light allowed in the so-called dark sector, or

• maximize the size of the dark sector itself.

One can (and I did) devote many years of their life to understanding the trade-offs between
such alternative objectives.

The LSST scheduler also faces competing objectives—there won’t be just one right answer.
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Optimal vs. Just Pretty Good

Optimization problems arising from physics (such as optimal control or mask-design for high-
contrast imaging) must be solved precisely or the solution has no physical meaning.

However, for operational problems, such as how to schedule the operation of LSST, optimality
is less important.

What matters is finding a “good” solution, which means a solution that seems as good or
better than what one might expect a human to arrive at.

It is often possible to use simple/fast heuristics to produce a good solution much more quickly
than one could produce an “optimal” solution.

Example 1. Traveling Salesman Problem (TSP). It’s really easy to find very good solutions.
It’s famously hard to prove a solution is optimal.

Example 2. Territory Assignment Problem. Similar to TSP...
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Territory Assignment Problem

Large pharmaceutical companies employ hundreds of highly paid sales reps.

It’s important to assign roughly the same number of doctors to each sales rep.

It’s also important to make each sales rep’s “territory” as compact/convex as possible.

The “original” formulation of this problem was an integer programming optimization problem.
It took about a month to solve one instance of the problem.

When asked to help make things go faster, my first question was: “Do you require a solution
to the IP or would some other approach be acceptable?”

Answer: other approaches are acceptable as long as the solution is “good”.

I reasoned that if the USA were one-dimensional instead of two, the problem would be easy:
just divide the number of doctors by the number of sales reps, round that ratio to the nearest
integer and then make compact clumps of this size starting at one end and extending to the
other. The only reason the real problem is hard is because the USA is a two-dimensional set.

I implemented code using a space-filling-curve to map the two-dimensional space into a
one-dimensional space and then employed the 1D solution described above.

Because the space-filling-curve is very kinky, the “1D” solution isn’t “good” enough. I then
used a Kernighan-Lin-style “two-swap” algorithm to improve the solution.

I got “excellent” solutions in just a few minutes of cpu time.

I predict that such smart heuristics will prove to be the best way to go for LSST.
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How Can I Help?

• I’m familiar with the various algorithms (and codes) for optimization.

• I’m familiar with interfacing optimization software with other software.

• I’d be happy to help compare/assess various solution approaches.

• I might have some good ideas for fast heuristics.
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Thank You!



Example: Airline Equipment Scheduling

Given:

• A set of flight legs (e.g. Newark to Chicago departing 7:45am).

• A set of aircraft.

Problem: which specific aircraft should fly which flight legs?

Model:

• Generate a set of feasible routes (i.e., a collection of legs which taken together can be
flown by one airplane).

• Assign a cost to each route (e.g. 1).

• Pick a minimum cost collection of routes that exactly covers all of the legs.
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Let:

xj =

{
1 if route j is selected,
0 otherwise

aij =

{
1 if leg i is part of route j,
0 otherwise

cj = cost of using route j.

An Integer Programming Problem:

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = 1 i = 1, 2, . . . ,m,

xj ∈ {0, 1} j = 1, 2, . . . , n.

An example of set-partitioning problems.
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