
1 Derivation

Let us define zi(x) as the warp for epoch i at pixel x, and zc(x) as the coadd at
that location. Then we have:

fi =
∑
x

zi(x) (1)

(summed over a top-hat aperture or weighted aperture) for the measured, un-
corrected flux at each epoch, and

fc =
∑
x

zc(x) (2)

(again summed over an aperture) as an uncorrected measurement of the flux on
the coadd.

The coadd pixels are related to the warp pixels by

zc(x) =
∑
i

wci sizi(x), (3)

where wci are the weights used in the coaddition process, and si are the per-epoch
photometric scaling factors to put these on a common photometric system.

If we take the sum over x on both sides we get:∑
x

zc(x) =
∑
x

∑
i

wci sizi(x) (4)

fc =
∑
i

wci sifi. (5)

This is our uncorrected coadd flux, but we now want to correct this value
to the standard passband. This correction requires knowledge of the spectral
energy distribution (SED).

As shown in e.g. Burke, Rykoff et al. (2018), the AB flux in the observed
passband for a single epoch i is given by:

fobsi =

∫∞
0
Fν(λ)Sobs

i (λ)λ−1dλ∫∞
0
FABSobs

i (λ)λ−1dλ
, (6)

where Fν(λ) is the SED, Sobs
i (λ) is the transmission function of the observed

passband (which is a function of position, airmass, filter, etc.), and FAB is a
flat spectrum on the AB scale. In addition, as discussed in Burke, Rykoff et
al. (2018), the integral in the denominator is the achromatic contribution to
the throughput (essentially assuming a flat SED). Therefore, the scaling in the
coadds is:

si =
1

c
∫∞
0
Sobs
i (λ)λ−1dλ

, (7)

where we have added an additional c term to denote the possibility of choosing
an arbitrary coadd zeropoint. (Is this necessary to put in here?)
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We similarly define the flux as would be observed through the (arbitrary)
standard passband:

f std =

∫∞
0
Fν(λ)Sstd(λ)λ−1dλ∫∞

0
FABSstd(λ)λ−1dλ

. (8)

Note that the flux through the standard passband does not have a subscript i
since it does not vary per epoch.

The warps have been created after scaling to the common reference zero-
point, ignoring any chromatic terms. Therefore, in correcting the coadds, what
we care about is the per-epoch “chromatic correction” which is given by the
ratio of the flux in the observed passband to the standard passband, denoted
rchromi :

rchromi ≡ fobsi /f std (9)

=

∫∞
0
Sstd(λ)λ−1dλ∫∞

0
Sobs
i (λ)λ−1dλ

∫∞
0
Fν(λ)Sobs

i (λ)λ−1dλ∫∞
0
Fν(λ)Sstd(λ)λ−1dλ

. (10)

However, this is rather inconvenient because we would prefer not to go back
to the invidual epoch transmission curves and fluxes. Fortunately, we can com-
pute the “coadded observed passband” Sobs

c (λ) (via analogy to the coadded
point-spread-function (PSF)).

Sobs
c (λ) =

∑
i w

c
i siS

obs
i (λ)∑

i w
c
i

(11)

Sobs
c (λ) =

∑
i w

c
i

Sobs
i (λ)∫∞

0
Sobs
i

(λ)λ−1dλ∑
i w

c
i

, (12)

where we do the averaging at each wavelength step.
The corrected coadd flux then becomes:

f ′c =
∑
i

wci fir
chrom
obs (13)

= fcr
chrom
obs (14)

= fc

∫∞
0
Sstd(λ)λ−1dλ∫∞

0
Sobs
c (λ)λ−1dλ

∫∞
0
Fν(λ)Sobs

c (λ)λ−1dλ∫∞
0
Fν(λ)Sstd(λ)λ−1dλ

. (15)

Therefore, given an SED we need to know the coadded transmission curve. In
the “traditional” coadd, we need to know this per object because of the different
inputs, so the amount of data to store is inconvenient and the advantage over
recreating the full stack is limited. However, for cell-based coadds the entire cell
will share the same observed transmission curve (assuming the sensor chromatic
variation does not vary significantly on a ≈ 150 pixel cell size.1).

1That better be true.
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