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Outline

• Scope of the work
• Some terminology
• What CM tools will look like eventually

• Examples from Fermi-LAT data processing web interface
• Aside, what they won’t look like:

• Basically, this is everything that Robert cares about
• How to get there from where we are
• Next steps
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SCOPE OF THEWORK
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Some Terminology

• In DMTN-181 K-T applied several synonyms for “task” to different levels 
of data processing:

• Task: as per DM, one quanta of Pipetask
• Job: a bunch of tasks that get run together
• Workflow: a bunch of job that are defined in a BPS workflow file
• Campaign: a bunch of workflows that represent a complete 

processing of some set of data
• Production: a bunch of related campaigns 
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Some More Terminology

• In practice DP0.2 has played about a bit differently
• Task: as per DM, one quanta of Pipetask
• Job: a bunch of tasks that get run together 

• These are defined by the BPS clustering mechanism
• Workflow: a bunch of jobs that are defined in a BPS workflow file
• Group: a subset of data and one or more workflows that it takes to 

process them
• Step: a part of a campaign

• These are defined by the pipeline yaml files 
• Campaign: a bunch of workflows that represent a complete 

processing of some set of data
• Production: a bunch of related campaigns

• E.g., DP0.2, which includes DP0.2 testing, DP0.2 production
• SomethingSuitablyEpic: all the campaigns of a particular type

• E.g. DataProc, SimProc, CalibProc
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Example end-user interface
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This is the top-level
view of the Fermi-LAT
data processing

It provides links to:

Processing status,
Data quality monitoring,
Automated alarms

A table like this could be the “step to group” level view, showing 
which groups are currently being processed for a given step.



Automated Alarm Drill Down
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This is what is presented when the user clicks on a “group” 
where automated warnings had been generated. 

In this case the warning is pretty minor, a derived quantity is just 
slightly outside the nominal ranges 



Automated Alarm Associated Plot
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Users can also click through to the plot underlying the derived
quantity, showing that data for the channel generating the alarm 
are reasonable



Data quality monitoring
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This is not part of CM, but it is a view into the “shifter” plots 
available in Fermi DQM.   These are what the data shifters use to 
mark data as good & ready for export.



Data processing monitoring
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This is the drill down menu for data processing monitoring, it 
shows which data are available (and their location) from a 
particular “run”
For us “run” would be “workflow”



What CM is not!

• CM is not a tool to “analyze all the data from last night in some new
way”

• That is a question of setting up a yaml pipeline to chain together the 
right tasks and to figure out the right data queries to define the input 
data etc…

• That is important, but _NOT_ what we are talking about here.
• Here we are assuming that we already have more or less working

pipeline yaml files, and some way to define the inputs that we want to 
run them on.

• Once you’ve done that, then we can talk about if it makes sense to 
turn those pipelines in ”Campaigns” for CM
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HOW TO GET THERE FROM WHERE
WE ARE
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How things are done now

• Task: defined by pipetask
• Job: defined by BPS (clustering), executed by panda
• Workflow: defined by a prodstatus executable / executed by panda
• Group: managed in git using yaml files from prodstatus
• Step: managed as JIRA issues
• Campaign: managed as an ”epic” JIRA issue
• Production: also managed as an “epic” JIRA issue (maybe?)
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Proposal for changes

• Task: defined by pipetask
• Job: defined by BPS (clustering), executed by panda
• Workflow: defined by a prodstatus executable / executed by panda
• Group: defined / managed by prodstatus using yaml & sql DB
• Step: defined / managed by prodstatus using yaml & sql DB
• Campaign: defined / managed by prodstatus using yaml & sql DB
• Production: defined / managed by prodstatus using yaml & sql DB
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Keep in mind: workflows are executed by panda, what we need
from CM are tools to

generate workflows & prepare input collections
track workflow execution
provide book-keeping for layers above workflows
provide a nice user interface



Tagged collections for “group” definition

• Currently prodstatus scripts:
• break each campaign Into “steps” (following the pipeline yaml) 
• and then divides each ”step” into groups (using data selection 

queries) and produces yaml files for each which are then tracked in 
git / JIRA

• Proposal:
• break campaign into ”steps” as now
• break data into subsets using “Tagged” collections and use collection 

naming as a bookkeeping tools
• All the BPS workflows in a “step” are identical, except for input and 

output collection names
• ”group” collects the one or more workflows needed to process all 

the data in that input ”Tagged” collection (allowing for rescuing 
crashed submissions)

• Track execution using sql DB tables 
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CM Elements

• prodstatus package (https://github.com/lsst-dm/prodstatus)
• CM scripts

• Production launching area
• Local version of scripts and configuration files, where the prodstatus scripts 

are run from, this is editable.
• YAML archive

• A location for saving “as run” versions of configurations files, file are copied 
here and made read-only.

• PANDA archive
• A location for saving log & monitoring files from PANDA

• SQL DB
• A simple database for bookkeeping

• Web interface package
• Where we develop and keep the tools needed for the web-interface

• CM web server
• User-facing web interface
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https://github.com/lsst-dm/prodstatus


Proposed prodstatus scripts

• create{XXX} (i.e., createWorkflow, createGroup, createStep, …}
• Takes a combination of python and yaml as input
• Generates relevant DB entries 
• Does relevant butler collection management tasks (i.e., butler 

associate, making chained collections)
• launchGroup

• Launches current workflow of a particular ”group” in panda
• Updates relevant DB entries

• checkWorkflowStatus
• Checks on status of workflows in panda
• Updated relevant DM entries

• check{XXX}Status  {i.e.,  checkGroupStaus, checkStepStatus, …}
• Does internal bookkeeping in SQL DB, updating which “Groups”, 

”Steps”, etc.. are completed and updating links to data products
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Proposed web hooks

• gen{XXX}Table (i.e., genStepTable, genCampaignTable, …)
• Generate the high-level tables that are the outward facing interface

• Could generate static HTML at first for testing by eventually should 
be dynamic

• validate{XXX} (i.e., validateWorkflow, validateGroup, validateStep…)
• Marks data as good & ready to be used in subsequent processing

• invalidate{XXX} (i.e., validateWorkflow, validateGroup, validateStep…)
• Marks data as bad & cleans up

• launchGroup
• Launches processing for a particular group

• retryGroup
• Creates a new workflow for a particular group and launches it 
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NEXT STEPS
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Next Steps

• Set up a working example on some test data
• Work locally on SDF:

• Butler repos, SQL DB, yaml archive, production area, web interface 
can all be local

• Generate web interface as static html 
• Port example to cloud:

• Production area is local
• Butler repos, SQL DB, yaml archive and web interface are remote



Splitting up the work

• To be discussed
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