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Abstract

Cosmic rays (CRs) are energetic particles that form a trail when they impact CCD. Here we are
investigating the possibility to recognise the CR trails morphologically, using only one snap instead
of the currently baselined two snaps designed to find CRs by image differencing. If successful,
morphological detection would allow the LSST to recover up to 8% of total observing time (saving
on the closing/opening shutter and readout time). Evaluating different approaches, we created
an overview of the performance of currently available CR detection methods in LSST Stack and
external to the Rubin Construction Project. Two major paradigms are explored: the conventional
approach using Laplacian edge detection (Rubin default CR detection algorithm, and AstroScrappy)
as well as the machine learning approach (Cosmic-CoNN and Unsupervised learning, called LAICA).
All the algorithms except LAICA are tested on both science and difference images on the Hyper
Supreme-Cam data. Our analysis showed that all of the tested algorithms performed similarly. We
produced a visually verified and labeled high-purity dataset of stamps labeled as ”CR” and ”NOT
CR” that can be used in future investigations and algorithm optimization. A good next step in
this investigation would be to use dark frames to quantify the sample completeness. The results of
this CR study bode well for the suggestion to abolish the two-snaps-per-visit scenario.
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1 Introduction

Cosmic rays (CRs) are caused by energetic particles (electrons, protons, muons) impacting CCD
array. The counts of CRs (about 1 CR cm−2 sec−1 above the atmosphere and several orders of
magnitude smaller at the sea level) can be non-negligible compared to anticipated alert counts,
and thus their recognition and removal is an important step in alert production1. Current default
plan for LSST is to difference the two snaps per visit and find CRs in resulting difference image.
However, when considering the shutter open / close time and readout time, the two-snaps strategy
results in using 8% more observational time than if there was no intermediate readout. Therefore,
this report investigates the possibility of finding CRs without relying on the availability of two
snaps, with the ultimate goal of informing decision whether LSST can be executed with visits
without two snaps2

2 Conventional Approach

We used data provided by the Hyper Supreme-Cam (HSC) mounted on the Subaru telescope. The
science images in ”HSC/raw/all” and templates from ”HSC/runs/RC2/w 2022 04/DM-33402”
were used to create the dataset. For initial investigations, Visit 11710 was chosen, for no particular
reason. This visit was obtained on December 11, 2014. The visit includes 103 detectors that
collected data at the same time. Each detector has 4176× 2948 pixels CCD; the size of each pixel
is 15µm× 15µm. The exposure time was t = 300s and the field center is at R.A=150.18 deg. and
Dec =+1.73). The entire visit contains 8.8 · 108 pixels, with 2.3 · 106 pixels marked as bad. Given
the size of the pixels, the number of pixels per CCD and the exposure time, approximately 104 CRs
per CCD would be expected above the atmosphere. Giving Subaru’s altitude of 4,139 m above sea
level, we expect several orders of magnitude lower CR flux.

We have not considered yet dark frame images obtained with LSSTCam at SLAC, or with
ComCam at the summit.

2.1 Default CR algorithm on science images

The current CR detection algorithm is detailed in the publication Lupton et. al.: ”SDSS Image
Processing II: The Photo Pipelines”. This algorithm finds CRs using their morphology: in fully
sampled images, CRs look sharper than point spread function. The same algorithm is implemented
in Rubin software stack and used as a part of the current Alert Production (AP) workflow.

To assess the algorithm’s performance, the interpolation over recognized CRs is disabled, al-
lowing the CRs to stay visible on the difference images. This has no effect on the ability of the
CR detector to locate CRs, but it forces the DIASource detector to find CRs as DIASources. This

1There are two types of Rubin image processing where CRs may affect the quality of the final data products:
co-added image production and analysis, and alert production. It is expected that CRs will be treated similarly to
all other transient sources during co-added image production and recognized as statistical outliers. Alert production
presents a harder challenge regarding CRs than co-added image production because CRs may be misinterpreted as
alerts. The baseline plan assumes that two back-to-back exposures (a.k.a. snaps) will be obtained for each visit, and
that all sources detected in their difference will be easily identified as CRs and subsequently masked before adding
snaps into a single-visit image.

2Traditional morphological methods (e.g. SDSS algorithm and L.A. Cosmic) relied on the fact that CRs are
typically sharper than the point-spread function (PSF). Those algorithms were quite successful when applied to
thin CCDs, where CRs would typically span only a few pixels. However, with thick CCDs such as used in Rubin’s
LSSTCam, CRs can be quite extended worm-like structures and it is not obvious that existing algorithms can be
readily applied.
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is done to test for the possibility that the DIASource detector mistakes CRs for DIA sources,
and to calculate the severity of the DIASource contamination by CRs. Following the creation of
a database with the coordinates of all the detected DIASources, 30 × 30 pixel ”postage stamps”
(hereafter ”stamps”) around DIASource’s center are extracted from the difference images.

2.1.1 Exposure and Mask

To evaluate the algorithm’s performance, each detector’s mask and exposure must be used. Mask
containing information about position of the pixels are available for Template, Science, as well as
Difference objects. Template CR mask marks all pixels that were part of the CR from all the visits
that were used to create the template (this is a documented bug that eventually will be fixed).
Science CR mask marks only pixels determined as CRs in that visit. The difference mask inherits
CR mask from both the Science and the Template, and thus it is of limited use because of the above
mentioned bug. Inherited Template CRs are spread because of the process that widens Template
objects PSF to match Science objects. Because of that the CRs on the Difference mask that are
inherited from the Template mask look like rectangles. Since Difference mask is of limited use, only
Science CR mask was used to get the information about CRs on each detector. Example of the
mask is shown in image 1.

Figure 1: CR masks of the detector 42 from the visit 11710. The template mask contains all the
CRs from the visits that were used to create the template. The Difference mask then inherits those
CRs as well as the CRs from the science mask. Therefore, to receive valid information about the
CRs in current visit, the science mask CRs must be used instead of difference mask.
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There is a noticeable diagonal line detected as CR in the science image of the figure 1 and
2. Closer inspection revealed that the line was formed by a fast-moving satellite. For the current
method, most satellite lines are identified as CRs. Out of the 107 detectors, 7 of them (6.8%) are
contaminated with something that looks like a satellite trail.

Figure 2: Representation of exposures for the detector 42 from the visit 11710. Value of each pixel
is displayed using tanh(exposure) stretch to enhance contrast. There are notable diagonal lines
that are created by a fast moving satellite. Those lines are detected as CRs by the algorithm, as
seen in figure 1.

This algorithm detected 878,807 pixels as CR pixels inside science mask. It is informative to
calculate:

CR =
NCRpix

Ntotpix
= 0.0998% = 997.6 CR pix/M pix

where NCRpix is the number of CR pixels in visit 11710 and Ntotpix is the total number of pixels.
The result is 997.6 cosmic ray pixels per megapixel, or around 0.1% of all pixels are associated with
CRs.

2.1.2 DIASources

LSST alerts will be produced for DIASources detected in difference images. In this dataset, some
DIASources are CRs because interpolation of the CRs in Science images was turned off. This
step was skipped in order to evaluate DIASource finder’s ability to create DIASource from the CR
signal.
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DIASource detector detected 18,343 sources from the visit 11710. After each object is detected,
a stamp is cut around each object so it is centered inside 30x30 pixels image. Each stamp’s CR
mask is examined and 232,247 CR pixels are found on the cutouts. Rest of the CR pixels from
difference images are not detected as DIASources. This number represents only 26.4% of all CR
pixels. The number of CR pixels that are associated with DIASources is thus

CR = 0.0264% = 263.6 CR pix/M pix

This is the number of potential CR pixels that could become DIASource and thus could poten-
tially contaminate alerts. The rest of CR pixels are not associated with DIASources, and are of no
consequence for alert production.
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(a) Detector 6 (b) Detector 42

Figure 3: Masks showing in white color which pixels are detected as CRs by the Default CR detector
on Science images. Red rectangles show stamps that are cutout around the DIASources and have
one or more pixels detected as CR by the same algorithm. Out of 878,807 CR pixels, 232,247 are
associated with an DIASource and are found inside red rectangles. Due to the process of PSF
convolution step during the DIASource detection, great amount of the CR pixels are not detected
as DIASource. This is by the design and is not a concerning issue.
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(a) Detector 6 (b) Detector 42

Figure 4: Zoomed in upper right corner of the figure 3 showing in white color which pixels are
detected as CRs by the Default CR detector on Science images. Red rectangles show stamps that
are cutout around found DIASources and have one or more pixels detected as CR by the same
algorithm. Mostly smaller CRs are detected as DIASources as well as only parts of longer ones.
Please note this image contains no information about the brightness of the CR-s only the position
because it’s showing the CR mask.

2.1.3 Postage Stamps

Alert ”postage stamp” is a cutout from the difference exposure with the shape of 30x30 pixels
around detected DIASource.
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In order to investigate number of CR objects posing as DIASources, each stamp is labeled as
either ”CR” or ”not CR”. If a stamp has more CR pixels in a CR mask than the threshold L, the
entire stamp is labeled ”CR,” otherwise ”not CR.”

Figure 5 shows the distribution of stamps with different number of CR pixels in CR science
mask. Median value of CR pixels is 18 CR pixels per stamp. It’s also clear that a significant
number of CRs are made up of merely a few pixels. This is mostly expected because size of the
CR in CCD is mostly due to the CR angle of incidence and energy. There is a possibility that the
CR’s angle of incidence will be perpendicular to the CCD, and have such low energy that just a
few pixels will be affected. If we use median value of 18 CR pixels per CR as a means to evaluate
CR flux we get:

j =
NCR

t ·A
= 0.082

CR

cm2 · s
where NCR is rough number of CRs, A is the area of the telescope and t is the time of the exposure

Figure 5: Histogram of the distribution of stamps with different number of CR pixels detected in
the science mask created by the Default CR algorithm. Median number is 18 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

Figure 6 shows stamps containing different number of CR pixels inside the science CR pixel
mask. The CRs with 1, 2 and 5 CR pixels are present, and must be given the ”CR” label. CRs
with the count number 60 and > 80 are usual due to multiple cosmic rays are present in the same
stamp. For stamps of dimension 30× 30 the longest straight line is 43 pixels long. That is the the
highest number of the CR pixels one stamp can have from one CR that has one pixel wide trail.
Number significantly higher than that is due to either multiple CRs present in the same stamp, or
the CR particle drifting inside CCD. A discussed below, L = 1 threshold is used for subsequent
analysis.
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(a) 1 pixel (b) 2 pixels

(c) 5 pixels (d) 10 pixels

(e) 30 pixels (f) 60 pixels (g) > 80 pixels

Figure 6: Examples of DIASource stamps with different numbers of CR flags in its mask created by
the Default CR algorithm on the science images. Stamps are 30x30 pixels. Observe various shapes
and sizes of the CRs that algorithm detected.
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To assess the optimal threshold L for the minimal number of CR pixels in the science mask for
the stamp to become labeled as ”CR”, one needs to observe figure 7. The figure shows all stamps
that contain only 1 CR pixel in their CR mask. It is obvious that most of those stamps really show
cosmic rays that have such a combination of energy and incidence angle that only one pixel on the
CCD is affected. Out of 82 stamps with 1 CR, 76 of them clearly show a cosmic ray in the middle
of the stamp. Therefore, a threshold value L = 1 is adopted.

Figure 7: All of the 82 examples of stamps with 1 pixel flagged as CR for visit 11710. It is clear
that most of the stamps are in fact CRs so the cutoff L = 1 is chosen. If L > 1 is chosen all of
those examples would be classified as objects.
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2.1.4 Labels

The following steps are done to classify postage stamps into ”CR” and ”not CR” subsets. To obtain
a mask of CRs and the exposure of the Science image, the Default CR algorithm was first run on a
science image without interpolation (”calexp”). The second step is to build a difference image by
combining the exposures of the science image and the template (produced beforehand). Following
the creation of the difference image, the DIASource detector searches for DIASources (including
CRs) and returns a table of DIASources and their positions. Procedure to this point is the same
as the standard procedure of the Alert Production, only difference is that in this case CR pixels
are not interpolated. Template exposure is cut into 30 × 30 pixel stamps with DIASources in the
middle. Then the Science CR mask is analyzed and if any CR pixels are found inside the stamp,
whole stamp is labeled ”CR”. Otherwise, it’s labeled ”not CR”.
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Figure 8: Random sample of 100 30x30 pixels stamps cut around middle of the DIASources that
are labeled by the Default CR algorithm on science images as ”CR”.
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Figure 9: Random sample of 100 30x30 pixels stamps cut around middle of the DIASources that
are labeled by the Default CR algorithm on science images as ”not CR”.

The stamp classification summary is listed in Table 1. Figure 8 shows example of ”CR” stamps,
while ”non CR” examples are shown in figure 9.
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Total CR not CR
18343 11211 7132

61% 39%

Table 1: Distribution of the labels of the 30x30 pixels stamps cut around middle of the DIASources
that are labeled by the Default CR algorithm on science images inside the visit 11710

The adopted classification algorithm is not perfect and although most stamps are correctly
labeled, there are also some mislabeled stamps. Figure 10 shows that some stamps labeled as ”not
CR” clearly contain CRs, while some examples of false negatives are shown in figure 10a. Therefore,
the current implementation of Alert Production pipeline can produce alerts that are purely a result
of misidentifying a CR. On the other hand, all visually examined ”CR” stamps really contain a CR
so false positive rate is very low.

(a) Stamps labeled as ”not CR”. Rows 1, 4, 5
and 6 clearly contain CR

(b) Stamps labeled as ”CR”

Figure 10: Examples of stamps that have been examined in greater detail. Template, Science and
Difference images use the same normalization factor, meaning that the brightest pixel of all three
is white and the darkest is black, with the color linearly proportional to values. This way the
ratio of pixel values between Template, Science and Difference is uniform. Diff (norm), the fourth
column, is a recolored version of the Difference that has been normalized by itself, making the
image’s greatest value light green and the lowest dark purple.
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2.1.5 Interpolation

(a) CR interpolation.

(b) No CR interpolation.

Figure 11: First image showing stamps that had one or more CR pixels even after interpolation of
the CRs was turned on. Second image is showing same images but with the interpolation of the CRs
turned off. The interpolation in most cases is good, although there are some cases interpolation
caused artifacts in the image.
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To evaluate interpolation, two runs were created. One run as described in subsection 2.1.4 that
will be called the ”non-interpolation” run, and the other one with the interpolation of the CRs
that will be called the ”interpolation” run. There are 227 stamps with more than one CR pixels
in the CR mask. All of those stamps are shown in figure 11. Most of the objects are cases
where both DIASource and CRs are present on the same stamp, but there are at least two cases
where DIASource finder picked up bad interpolation. This would create an alert only due to poor
interpolation.

2.1.6 Real DIASources contained in CR stamps

Figure 12: All of the stamps that are labeled as both containing OBJECT and CR. Out of 368,
only 36 can be clearly confirmed to contain both. This means that the stamps labeled as CR are
not heavily contaminated by the real astronomical objects.
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It is useful to understand how many stamps contain both CRs and real DIASources. Another run
was produced, this time with the interpolation turned on. This way the algorithm creates mask
in the difference image that contains information which pixels are part of DIASources (similar to
CR mask). This mask should contain only objects that algorithm thinks are true DIASources
(because interpolation was turned on). Afterwards, every stamp is labeled as OBJECT or NO
OBJECT similarly to the process described in 2.1.4. This way the number of stamps containing
real DIASources can be found. 11,211 stamps were labeled as CR and 3,540 as OBJECT. These
two labels are represented in the confusion matrix in table 2. After manual examination of the
stamps labeled both OBJECT and CR, only 36 out of 368 are found to be true objects containing
both cosmic rays and astronomical objects (figure 12). This means that after manual examination
only 36 stamps contain both object and CR, out of the 3,540 that contain objects. In other words
1% of detected DIASources contain CR pixels.

CR NOT CR

OBJECT 368 (2.01%) 3172 (17.29%)

NO OBJECT 10843 (59.11%) 3960 (21.59%)

Table 2: Confusion matrix of the stamps labeled as CR by the Default CR algorithm with CR
interpolation turned off, and stamps labeled as objects with the interpolation turned on. Most of
the OBJECTS do not contain CR pixels.

2.2 Default CR algorithm on difference images

The same algorithm described in section 2.1 is now used again but instead of Science images, it is
applied to difference images. The reason behind that is that difference images usually contain fewer
objects and have flatter background, so differences between the ”CR” and ”not CR” pixels should
be more obvious to the algorithm. Difference images are produced the same way as in the section
2.1, by running Default CR algorithm with interpolation turned off. Output of this approach is
the CR mask which conveys the information which pixels were recognised as CRs. This algorithm
detected 878,807 CR pixels inside science mask. Comparing that masks with the masks produced
in section 2.1 confusion matrix can be calculated, showing how many pixels are detected by which
algorithm. The confusion matrix is shown in table 3.
This algorithm detected 506,112 pixels as CR pixels. It is valuable to calculate:

CR = 0.061% = 610.1 CR pix/M pix

where NCRpix is the number of CR pixels in difference mask and Ntotpix is the total number of
pixels. The result is 610.1 cosmic ray pixels per megapixel of detector or around 0.061% of all
pixels are CRs. If we denote pixels which are detected as following (performance of Difference,
relative to Science)

• Science image CR and Difference image CR = TP

• Science image CR and Difference image NOT CR = FN

• Science image NOT CR and Difference image CR = FP

• Science image NOT CR and Difference image NOT CR = TN
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We can calculate:

purity =
TP

TP + FP

completeness =
TP

FN + TP

F1 = 2 · purity · completeness

purity + completeness

(1)

Difference image CR Difference image NOT CR

Science image CR 490941 (0.06%) 285297 (0.03%)

Science image NOT CR 15171 (0.002%) 828796047 (99.90%)

Purity: 0.970 Completeness: 0.632 F1 score: 0.766

Table 3: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and difference images. Purity, completeness and F1 score, for the performance of Difference
relative to Science, are calculated using equations 1

The science image CR detection masks and difference image CR detection masks are analyzed.
Pixels that are detected by both methods as well as those that are detected by only one method
are closely examined. Out of the total 791,409 pixels that are detected by both methods, 1.9%
are detected only on difference images, 36.1% are detected only on science images, and 62% are
detected on both. An example for a single detector is shown in figure 13.
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(a) Whole detector 62.

(b) Zoomed in center part of the detector 62.

Figure 13: Comparison of the CR masks obtained using different methods for detector 62 visit
11710. ”diffim CR” are pixels that are detected as CRs using the Default CR algorithm on difference
images, while ”sciim CR” are the ones detected using Default CR algorithm on science images. Most
of the ”diffim CR” are also detected in ”sciimg mask”, but the ”sciimg” mask contains 7,483 pixels
labeled as CRs while ”diffimg” mask contains only 5,803 for this detector.
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Out of the 103 detectors, this algorithm evaluated only 97 detectors, and it failed for 6 with
the error: ’Too many CR pixels (max 10000)’. Detectors that failed are: 16, 42, 43, 51, 52, 60.
Coincidentally, those detectors are the ones that have some number of satellite trails. Probably
detection of those pushed the CR pixel count over 10000 per detector causing the algorithm to fail.
Execution of the CR detection part of the Default CR algorithm took around 3.4 sec of runtime
per detector.
Difference images are identical as in section 2.1. Therefore, the DIASource detector is detecting
exactly the same DIASources. The only difference is that, when applying the procedure described
in section 2.1.4, some stamps have different labels. We use the same convention from 1, but instead
of pixels, labels of the stamps are used. Note that the F1 = 0.997 match between two algorithms
is very high; more quantitative details are listed in table 4

Difference image CR Difference image NOT CR

Science image CR 10480 (57.13%) 2 (0.01%)

Science image NOT CR 66 (0.36%) 7795 (42.5%)

Purity: 0.994 Completeness: 1.000 F1 score: 0.997

Table 4: Stamp-wise comparison of the CR masks produced by the Default CR algorithm on science
images and difference images. Purity, completeness and F1 score for the performance of Difference
relative to Science are calculated using equations 1, but instead of pixels, labels for the whole
stamps are used.

Figure 14: Histogram of the distribution of stamps with different number of CR pixels detected in
the difference image mask. Median number is 17 CR pixels per stamp. Stamps with 0 CR pixels
are not taken into consideration.
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Image 14 shows distribution of the stamps with different number of CR pixels detected by the
Default CR algorithm on difference images. Distribution is pretty similar to the distribution in
figure 5, which is an indication that we are detecting most of the objects similarly to the Default
CR algorithm on science images. If we use median value of 17 CR pixels per CR as a means to
evaluate CR flux, we get:

j = 0.053
CR

cm2 · s
where NCR is rough number of CRs, A is the area of the telescope and t is the time of the exposure.

Figure 15: All of the stamps that the Default CR algorithm on science images detected as CR, and
the Default CR algorithm on difference images detected as NOT CR. Left column shows difference
stamps, and the right shows where does the Default CR algorithm on the science images think the
CR position is.

Examples of the stamps that had different labels between the algorithms are shown in figures
15 and 16. A closer examination indicates that the predictions from Science images are more likely
to be false, and there are no CR present.
Examples in figure 16 show examples of the opposite, where science image algorithm labeled stamps
NOT CR and difference image as CR. From those examples it is clear that 24 (36.4%) of stamps
show what appears to be a CR, 41 (62.1%) show what appears to be a dipole and 1 that is neither.
This behaviour can be explained by the fact that the algorithm is made to work on images that
do not contain negative values, and when the transition between positive and negative values in
dipoles is too abrupt, algorithm interprets that object as CR.
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(a) All of the stamps that the Default CR algorithm on science images detected as NOT CR, and the Default
CR algorithm on difference images detected as CR. It appears that when algorithm is run on Difference
images, it can find CRs missed when it’s run on Science images. Also the algorithm detects dipoles as CRs,
so further tuning is needed.

(b) First 12 images from the figure 16a showing template, science and difference cutouts, all together normal-
ized, meaning that the brightest pixel of all three is white and the darkest is black and the color is linearly
proportional to values. Diff (norm) is a recolored version of the difference that has been normalized by itself,
making the image’s greatest value light green and the lowest dark purple.

Figure 16
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2.2.1 Conclusion

CR detection performed on difference images shows no significant improvement compared to science
images. When compared to the Default CR algorithm on science images, the algorithm detected
fewer pixels as the CR, but the performance after labeling the stamps does not differ significantly.
Aside from the possibility that there are certain types of CRs that algorithm didn’t find in either
case, a high level of agreement between the two approaches is encouraging.

2.3 AstroScrappy

AstroScrappy is the openly available implementation of the Laplacian Edge Detection called LA
Cosmic. The code can be found on github.com/astropy/astroscrappy, while the LA Cosmic is
described in paper: van Dokkum, ”Cosmic-Ray Rejection by Laplacian Edge Detection”. This
algorithm is similar to the one implemented in the Default CR algorithm, but its main advantage is
that it has detailed documentation for usage. For that reason, it is easier to change parameters and
fine-tune for a specific instrument. Algorithm was optimized by random search for the parameter
called sigclip. This parameter controls Laplacian-to-noise limit for cosmic ray detection, and lower
values will flag more pixels as cosmic rays. After testing, optimizing only this parameter was
deemed necessary because changing other parameters did not produce any significant improvement.
Optimization was done on only one detector, to save time. Two significant points in the parameter
space were evaluated, one using the knee method and one in the mean square error compared to the
Default CR algorithm in the difference images. A predetermined estimate of the data variance (ie.,
noise squared) in each pixel was provided by the Default CR algorithm inside the variance mask.
Algorithm was tested on both difference and science image. For both types of images algorithm
was first evaluated with such value of parameter sigclip for which minimum of the mean squared
error compared to Default CR algorithm on science images, and after that at the value at which
”knee” occurs in the graph of the sigclip vs. number of CR pixels graph. Second method refers to
the ”knee method” of optimisation and consists of choosing a point where diminishing returns are
no longer worth the additional cost.
Runtime of AstroScrappy is around 90 s per detector, but it can be probably optimised to run
in parallel mode. Further investigation is needed for more details of the shrinking AstroScrappy
runtime.

2.3.1 Science images

AstroScrappy was created for use on the astronomical images that are most similar to science
images. Parameter sigclip was identified to be mostly responsible for the amount of the pixels
detected as the CR. Before evaluating the performance, the best value of the sigclip was found
using two methods. First method is minimizing the mean square error (MSE) compared to Default
CR algorithm on science images, and the other one is the ”knee” method. For both methods two
searches were performed: wide search and narrow search. In the wide search the value of sigclip
was shifted for 0.18 each step in the range between 1 and 10. Both knee and minimum MSE points
were found in the interval between 2 and 5.5, so the narrow search was performed, with the sigclip
step of 0.07. For each step number of found CRs, MSE, purity and completeness compared to
Default CR algorithm on science images were evaluated. Figure 17 contains detailed plot.
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(a) Wide search for parameter sigclip.

(b) Narrow search for parameter sigclip.

Figure 17: Optimization of the AstroScrappy with respect to Default CR algorithm on science
images. Wide search was performed with steps of 0.18, while narrow search had 0.07 step size.

2.3.2 Science images at MSE minimum

AstroScrappy algorithm detected 812489 CR pixels on the science images, when sigclip = 5.0,
what represents minimum of the mean squared error compared to Default CR algorithm on science
images.

CR = 0.092% = 922.3 CR pix/M pix
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Comparing that to Default CR algorithm detector on the science images of 997.6 CR pix/M pix,
number of CR pixel is similar. Table 5 shows the confusion matrix between those two algorithms.
After closer examination it’s clear that agreement between the two algorithms was only F1 = 0.792.
This value of sigvalue is chosen because the agreement between the algorithms is the highest.

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 669342 (0.076%) 209465 (0.024%)

Default CR algorithm NOT CR 143147 (0.016%) 879880190 (99.884%)

Purity: 0.824 Completeness: 0.762 F1 score: 0.792

Table 5: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on science images.

The CR detection masks produced by the algorithm was compared to the CR detection masks
produced by the Default CR algorithm on science images. Pixels that are detected by both methods
as well as those that are detected by only one method are closely examined. Out of the total 1021954
pixels that are detected by both methods, 14% are detected only with the AstroScrappy, 20.5% are
detected only with Default CR algorithm on science images, and 65.5% are detected on both. An
example for a single detector is shown in figure 18.
Peculiar behaviour of the AstroScrappy can be manifested by having circular, blob shaped structures
of CR detection. It is not clear the reason for their existence. Closer look on those shapes are shown
on figure 19. Those structures are not around any particular object, and closer look revealed no
recognisable, so the reason of their occurrence is unknown.
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(a) Whole detector 42.

(b) Zoomed in center part of the detector 42.

Figure 18: Comparison of the CR masks of different methods on detector 42 visit 11710. LSST stack
stands for the Default CR algorithm. There are some visible ”blobs” of AstroScrappy misdetection
of the CRs. Otherwise algorithms are mostly in agreement.
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(a) Cluster of nearby mislabeled blobs.

(b) Zoomed in to one region of mislabels.

Figure 19: Exploring blobs of defective detection of CRs by AstroScrappy on science images. It is
unclear what is the reason of the misdetection.

Mask produced by the AstroScrappy was used to determine CR and NOT CR labels for the
DIASources described by the process in section 2.1.4, and compared to the same process using
the Default CR algorithm on science images. Match between the two algorithms is high with
F1 = 0.998. AstroScrappy determined that 61.35% of the DIASources are CR-s while 38.65% are
NON CR. Details are listed in table 6

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 11191 (61.01%) 20 (0.11%)

Default CR algorithm NOT CR 63 (0.34%) 7069 (38.54%)

Purity: 0.994 Completeness: 0.998 F1 score: 0.996

Table 6: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on science images.
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Figure 20: Histogram of the distribution of stamps with different number of CR pixels detected
with the AstroScrappy algorithm on science images. Median number is 14 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

With the median of 14 CR pixel per one cosmic ray particle, as determined on the figure 20,
CR flux is:

j = 0.098
CR

cm2 · s
Images that are recognised by the Default CR algorithm on science images as CR, and by the

AstroScrappy on science images as NOT CR are shown in figure 21. Those images show something
that does not look like a CR, so most of this detection by Default CR algorithm is false positives.
This shows that AstroScrappy has lower affinity for false positive detection.
Images that are recognised by the Default CR algorithm on science images as NOT CR, and by
the AstroScrappy on science images as CR are shown in figure 22. Most of those images contain
CR-s, so this proves that Astroscrappy can detect CR-s that Default CR algorithm can’t. Some
questionable detection is due to errors and artifacts in the images.
This shows that while the F1 score was lower on the table 5, on the CRs that could be mixed up
with DIA sources, AstroScrappy has superb performance.
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Figure 21: All of the stamps that the Default CR algorithm on science images detected as CR, and
the AstroScrappy on science images detected as NOT CR. AstroScrappy mostly missed only CRs
that don’t look like a straight line.
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Figure 22: All of the stamps that the Default CR algorithm on science images detected as NOT
CR, and the AstroScrappy on science images detected as CR. AstroScrappy detected CRs that
Default CR algorithm missed.

2.3.3 Science images at knee

The point for which AstroScrappy has parameter siglicp = 3.0 represents the ”knne” point. At
that point diminishing increase in CR pixels does no longer follow the increase in the parameter.
Since this point is as the significantly lower value of sigclip, higher number of detected CR pixels
are expected. AstroScrappy algorithm detected 6,268,128 CR pixels on the science images, which
is around seven times higher than Default CR algorithm on the science images.

CR = 0.712% = 7115.6 CR pix/M pix

Agreement between the Default CR algorithm on science images and AstroScrappy on science
images in the ”knee” point is pretty low, with F1 = 0.22. This low score is mostly due to low
purity, because AstroScrappy detected seven times more CR pixels.

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 785957 (0.089%) 92850 (0.011%)

Default CR algorithm NOT CR 5482171 (0.622%) 874541166 (99.278%)

Purity: 0.125 Completeness: 0.894 F1 score: 0.220

Table 7: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on science images.
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Out of the total 6,360,978 pixels labeled as CR by both algorithms, only 12.4% are detected by
both algorithms. 86.2% of CR pixels are detected only by AstroScrappy and 1.5% by only Default
CR algorithm. This means that probably AstroScrappy is detecting a lot of false positives, because
chance that Default CR algorithm mislabels pixels of that magnitude is unlikely. An example for
a single detector is shown in figure 23. Peculiar structures of CR detection that is detected at the
MSE minimum point, was also detected at the knee point. Its nature is unknown. Those structures
are on exactly the same places as on the figures 18 and 19.
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(a) Whole detector 42.

(b) Zoomed in bottom right part of the detector 42.

Figure 23: Comparison of the CR masks of different methods on the science images on detector 42
visit 11710. There is a high noise detection by the AstroScrappy in the ”knee” point what means
that probably the algorithm is not sufficiently tuned. Minimum MSE error point is the superior
tuning method, therefore meaning the Default CR algorithm on the science images is also fine tuned
to an acceptable degree.
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Mask produced by the AstroScrappy was used to determine CR and NOT CR labels for the
DIASources described by the process in section 2.1.4, and compared to the same process using the
Default CR algorithm on science images. The match between the two algorithms is inadequate
with F1 = 0.77. AstroScrappy determined that 97.4% of the DIASources are CR-s while 2.6% are
NON CR. While completeness is 1, purity is very low; therefore, the algorithm optimized this way
is not in agreement with the Default CR algorithm. Details are listed in table 8.

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 11211 (61.12%) 0 (0.00%)

Default CR algorithm NOT CR 6651 (36.26%) 481 (2.62%)

Purity: 0.628 Completeness: 1.000 F1 score: 0.771

Table 8: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on science images.

Figure 24: Histogram of the distribution of stamps with different number of CR pixels detected
with the AstroScrappy algorithm on science images. Median number is 23 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

With the median of 14 CR pixel per one cosmic ray particle, as determined on the figure 24,
CR flux is:

j = 0.753
CR

cm2 · s
There are 0 stamps that are classified by Default CR algorithm on science images as CR and

by AstroScrappy on science images in ”knee” point as not CR. In addition, most of the stamps are
classified as CR by AstroScrappy. This is very unusual and the primary suspect is poor choice of
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sigclip. Figure 25 shows some examples of the different detection by the algorithms. It is obvious
that most of the stamps are not showing CR-s.

Figure 25: Some stamps that the Default CR algorithm on science images detected as NOT CR,
and the AstroScrappy on science images detected as CR. Rate of false positives is high with this
type of tuning.

Optimizing AstroScrappy with the ”knee” method yielded a poor performance, and it is not
recommended.

2.3.4 Difference images

For the evaluation of the AstroScrappy on the difference images, the same optimization procedure
of the parameter sigclip was necessary. In the wide search value of sigclip was increased for 0.18
in the interval between 1 and 10. Both minimum of MSE and ”knee” point was located in the
interval between 2 and 5, so the narrow search in that interval was performed with the step of
0.06. ”Knee” point was located at 2.86 and MSE minimum at 4.33. For each step number of found
CRs, MSE, purity and completeness compared to Default CR algorithm on science images were
evaluated. Figure 26 contains detailed plot.
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(a) Wide search for parameter sigclip.

(b) Narrow search for parameter sigclip.

Figure 26: Optimization of the AstroScrappy with respect to Default CR algorithm on science
images. Wide search was performed with steps of 0.18, while narrow search had 0.06 step size.

2.3.5 Difference images at MSE minimum

AstroScrappy identified 665,506 pixels on the difference images as CRs, with the parameter sigclip =
4.33, what is recognised as the minimum of the mean squared error between the AstroScrappy al-
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gorithm and the Default CR algorithm on science images.

CR = 0.076% = 755.5 CR pix/M pix

Comparing that to Default CR algorithm detector on the science images of 997.6 CR pix/M pix,
number of CR pixel detected is for around a quarter lower. Agreement between the algorithms is
also low with the F1 = 0.798. This agreement is similar to the AstroScrappy on the science images
at the MSE minimum.

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 616038 (0.070%) 262769 (0.030%)

Default CR algorithm NOT CR 49468 (0.006%) 879973869 (99.894%)

Purity: 0.926 Completeness: 0.701 F1 score: 0.798

Table 9: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on difference images.

The CR detection masks produced by the AstroScrappy algorithm was compared to the CR
detection masks produced by the Default CR algorithm on science images. Pixels that are detected
by both methods as well as those that are detected by only one method are closely examined. Out
of the total 928275 pixels that are detected by both methods, 5.3% are detected only with the
AstroScrappy, 28.3% are detected only with Default CR algorithm on science images, and 66.4%
are detected on both. An example for a single detector is shown in figure 27.
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(a) Whole detector 42.

(b) Zoomed in center part of the detector 42.

Figure 27: Comparison of the CR masks of different methods on detector 42 visit 11710. Agreement
between the Default CR algorithm on the science images and AstroScrappy on the difference images
tuned in the MSE minimum is high. This shows AstroScrappy can be tuned to reproduce Default
CR algorithms results. performance.
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AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 11193 (61.02%) 18 (0.10%)

Default CR algorithm NOT CR 180 (0.98%) 6952 (37.90%)

Purity: 0.984 Completeness: 0.998 F1 score: 0.991

Table 10: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on difference images.

Stamp images of the DIASources were labeled as CR or NOT CR with the process described in
section 2.1.4. Match between the Default CR algorithm on science images is high with F1 = 0.998
agreement.

Figure 28: Histogram of the distribution of stamps with different number of CR pixels detected
with the AstroScrappy algorithm on difference images. Median number is 15 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

Median of 15 CR pixels per stamp is used to determine CR flux:

j = 0.075
CR

cm2 · s

Images that are recognised by the Default CR algorithm on science images as CR, and by the
AstroScrappy on difference images as NOT CR are shown in figure 29. Those show that Astro-
Scrappy properly labeled objects that look like CRs but are not CR.
Images that are recognised by the Default CR algorithm on science images as NOT CR, and by
the AstroScrappy on difference images as CR are shown in figure 30. Most of those images contain
CR-s, so this proves that Astroscrappy can detect CR-s that Default CR algorithm can’t. However,
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there are some examples where AstroScrappy detected dipoles as CR

Figure 29: All of the stamps that the Default CR algorithm on science images detected as CR, and
the AstroScrappy on difference images detected as NOT CR. AstroScrappy missed multiple CRs
that don’t look like a line. This is not completely obvious is it a misdetection by the AstroScrappy
or the Default CR algorithm.
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Figure 30: All of the stamps that the Default CR algorithm on science images detected as NOT CR,
and the AstroScrappy on difference images detected as CR. Astroscrappy detects multiple dipoles
as CRs.

AstroScrappy on the difference images shows great accuracy. Examining different predictions
between the Default CR algorithm and the AstroScrappy, it is discovered that in most cases As-
troScrappy was correct.

2.3.6 Difference images at ”knee”

For completeness, AstroScrappy was evaluated in the ”knee” point on difference images. Taught
by experience, ”knee” point has a significant purity problems. Following are the results:

CR = 0.587% = 5870.8 CR pix/M pix

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 698001 (0.079%) 180806 (0.021%)

Default CR algorithm NOT CR 4473643 (0.508%) 875549694 (99.392%)

Purity: 0.135 Completeness: 0.794 F1 score: 0.231

Table 11: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on difference images.
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(a) Whole detector 42.

(b) Zoomed in bottom right part of the detector 42.

Figure 31: Comparison of the CR masks of different methods on detector 42 visit 11710. Inflated
number of CR detection means this is not the optimal parameter tuning.
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Figure 32: Histogram of the distribution of stamps with different number of CR pixels detected
with the AstroScrappy algorithm on difference images. Median number is 15 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

j = 0.621
CR

cm2 · s

AstroScrappy CR AstroScrappy NOT CR

Default CR algorithm CR 11209 (61.11%) 2 (0.01%)

Default CR algorithm NOT CR 6386 (34.81%) 746 (4.07%)

Purity: 0.637 Completeness: 1.000 F1 score: 0.778

Table 12: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
images and AstroScrappy on difference images.
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Figure 33: All of the stamps that the Default CR algorithm on science images detected as CR, and
the AstroScrappy on difference images detected as NOT CR.

Figure 34: Some of the stamps that the Default CR algorithm on science images detected as NOT
CR, and the AstroScrappy on difference images detected as CR.
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3 Machine learning approach

Conventional CR-detection algorithms require tuning multiple parameters experimentally making
it hard to fine tune it for different instruments. For that reason, the machine learning approach
was investigated. In this approach, a different paradigm of programming is taken. Instead of
programming explicitly rules that pixels have to satisfy in order to be detected as CR, data is fed
to the machine learning (ML) algorithm. ML then learned to extract that rule from the data, and
to generalize it to data yet unseen. Learning in which the program is given the data (images) as well
as the correct answers, in this case the correct CR mask, is called supervised learning. Another type
of learning is unsupervised, where program is asked to establish connections in data and come to
conclusions without knowledge about the ”correct answers”. This type of learning does not require
manual examination of the data, but the ML program is usually less successful in performing the
task.

3.1 Cosmic-CoNN

Machine learning algorithm Cosmic-CoNN is the U-net type of deep convolution that uses deep
layers interconnected with convolution, maxpooling and upsampling operations. This type of deep
models are great in the segmentation type tasks such as this one and it was developed originally
for biomedical image segmentation. Cosmic-CoNN was trained on the dataset produced from the
thousands of images from the Las Cumbres Observatory global telescope network. Details about
the models can be found in the publication: Xu et. al.: ”Cosmic-CoNN: A Cosmic Ray Detection
Deep-Learning Framework, Dataset, and Toolkit”.

We tested Cosmic-CoNN on the HSC data and compared the performance to the Default CR
algorithm on the science images. Runs with Cosmic-CoNN CR detection on the both science images
and difference images are carried out, and compared using the Default CR algorithm run on science
images as ”meta truth”. Cosmic-CoNN was not trained on any detector that has similar thickness
of the HSC CCD detector, and consequently was presented during training with the CRs that don’t
necessary have the same shape.

3.1.1 Science images

This algorithm was trained on images that are most similar to our science images, and when tested
on science images it detected 758082 pixels as CR.

CR = 0.086% = 860.6 CR pix/M pix

Comparing that to Default CR algorithm detector on the science images of 997.6 CR pix/M pix,
results are pretty similar.

Cosmic-CoNN CR Cosmic-CoNN NOT CR

Default CR algorithm CR 691085 (0.078%) 187722 (0.021%)

Default CR algorithm NOT CR 66997 (0.008%) 879956340 (99.893%)

Purity: 0.912 Completeness: 0.786 F1 score: 0.844

Table 13: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and Cosmic-CoNN on science images.
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The CR detection masks produced by the algorithm was compared to the CR detection masks
produced by the Default CR algorithm on science images. Pixels that are detected by both methods
as well as those that are detected by only one method are closely examined. Out of the total 945804
pixels that are detected by both methods, 7% are detected only with the Cosmic-CoNN, 19.9% are
detected only with Default CR algorithm on science images, and 73.1% are detected on both. An
example for a single detector is shown in figure 35.
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(a) Whole detector 42.

(b) Zoomed in center part of the detector 42.

Figure 35: Comparison of the CR masks of different methods on detector 42 visit 11710. Some
pixels that are obviously part of the CR that Cosmic-CoNN detected, were not masked as CR. This
shows that this approach can yield inconsistent results which depends upon training data. Further
training is required.
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Runtime of Cosmic-CoNN took about 150 sec per detector, run on CPU. Deep models are slow
while running on the CPU, and GPU run should improve runtime performance. Also deep model
should, in theory, be able to run multiple detector images in parallel, but we were not able to
produce this behaviour.
Mask produced by the Cosmic-CoNN was used to determine CR and NOT CR labels for the
DIASources described by the process in section 2.1.4, and compared to the same process using
the Default CR algorithm on science images. Match between the two algorithms is high with
F1 = 0.988. Cosmic-CoNN determined that 59.83% of the DIASources are CR-s while 40.17% are
NON CR. Details are listed in table 14

Cosmic-CoNN CR Cosmic-CoNN NOT CR

Default CR algorithm CR 10963 (59.77%) 248 (1.35%)

Default CR algorithm NOT CR 11 (0.06%) 7121 (38.82%)

Purity: 0.999 Completeness: 0.978 F1 score: 0.988

Table 14: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
images and Cosmic-CoNN on science images.

Figure 36: Histogram of the distribution of stamps with different number of CR pixels detected
with the Cosmic-CoNN algorithm on science images. Median number is 14 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

With the median of 14 CR pixel per one cosmic ray particle, as determined on the figure 36,
CR flux is:

j = 0.091
CR

cm2 · s
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Figure 37: All of the stamps that the Default CR algorithm on science images detected as CR,
and the Cosmic-CoNN on science images detected as NOT CR. Cosmic-CoNN has troubles with
the detection of single pixel CR, and misses multiple cases of CRs. The machine learning is highly
dependent on the training set, so further fine-tuning is required.

Images that are recognised by the Default CR algorithm on science images as CR, and by the
Cosmic-CoNN on science images as NOT CR are shown in figure 37. It is clear that on most of
those conflicting stamps are CR-s, but a few examples of the real and valuable DIASources can be
found. Those would usually be interpolated in Default CR algorithm as CR.
Images that are recognised by the Default CR algorithm on science images as NOT CR, and by
the Cosmic-CoNN on science images as CR are shown in figure 38. Only 11 of those examples are
found, and while some of them is a CR, others are not entirely clear what they contain.
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Figure 38: All of the stamps that the Default CR algorithm on science images detected as NOT
CR, and the Cosmic-CoNN on science images detected as CR. Cosmic-CoNN detects only a few
CR-s that have not been detected by the Default CR algorithm. Good news there are no false
positive defections which shows great potential for this algorithm.

3.1.2 Difference images

Although Cosmic-CoNN was trained on the images that are most similar to science images, using
the algorithm on the difference images was evaluated. The CR-s should be able to get detected
easier on the difference images, and for that reason the algorithm was tested. It detected 689245
pixels as CR, compared to Default CR algorithm on science images 878807 pixels and 506112 pixels
on difference images.

CR = 0.078% = 782.4 CR pix/M pix

The number of the CR detected is somewhat lower compared to Cosmic-CoNN on science images
(860.6CR pix/M pix) and Default CR algorithm on the science images (997.6CR pix/M pix), but
little higher than Default CR algorithm on the difference images (755.5CRpix/M pix). This could
be attributed to both algorithms not being fully optimized to be run on the difference images.
Another explanation could be that most of the CR detection on the science images with both
algorithms are false positives, but after examining the stamp images this was deemed unlikely.
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Cosmic-CoNN CR Cosmic-CoNN NOT CR

Default CR algorithm CR 637950 (0.072%) 240857 (0.027%)

Default CR algorithm NOT CR 51295 (0.006%) 879972042 (99.894%)

Purity: 0.926 Completeness: 0.726 F1 score: 0.814

Table 15: Pixel-wise comparison of the CR mask produced by the Default CR algorithm on science
images and Cosmic-CoNN on difference images.
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(a) Whole detector 42.

(b) Zoomed in center part of the detector 42.

Figure 39: Comparison of the CR masks of different methods on detector 42 visit 11710. No
significant improvement over the Cosmic-CoNN on the science images (figure 35) is made.
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Comparison of the Cosmic-CoNN algorithm on the difference images with the Default CR
algorithm algorithm on the science images is shown in table 15. The agreement value between
the algorithm CR pixel mask is F1 = 0.844. From the 945804 CR pixels detected by either one
of the algorithms, 70.1% were detected by both. 19.8% were detected only using the Default CR
algorithm on science images, and 7.1% using only Cosmic-CoNN on difference images. An example
for a single detector is shown in figure 39.

Cosmic-CoNN CR Cosmic-CoNN NOT CR

Default CR algorithm CR 11022 (60.09%) 189 (1.03%)

Default CR algorithm NOT CR 126 (0.68%) 7006 (38.19%)

Purity: 0.989 Completeness: 0.983 F1 score: 0.986

Table 16: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
images and Cosmic-CoNN on difference images.

Mask produced by the Cosmic-CoNN was used to determine CR and NOT CR labels for the
DIASources described by the process in section 2.1.4, and compared to the same process using the
Default CR algorithm on science images. Cosmic-CoNN determined that 60.78% of the DIASources
are CR-s while 39.22% are NON CR. The match between the Cosmic-CoNN on difference images
and the Default CR algorithm on science images is high with F1 = 0.986. Comparing that to
the Cosmic-CoNN on difference images match of F1 = 0.988, we conclude that results are very
similar. Cosmic-CoNN on difference images (Purity: 0.989 Completeness: 0.983) has lower purity
and higher completeness than on science images (Purity: 0.999 Completeness: 0.978). Details are
listed in table 16
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Figure 40: Histogram of the distribution of stamps with different number of CR pixels detected
with the Cosmic-CoNN algorithm on difference images. Median number is 14 CR pixels per stamp.
Stamps with 0 CR pixels are not taken into consideration.

With the median of 14 CR pixel per one cosmic ray particle, as determined on the figure 40,
CR flux is:

j = 0.083
CR

cm2 · s
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Figure 41: All of the stamps that the Default CR algorithm on science images detected as CR,
and the Cosmic-CoNN on difference images detected as NOT CR. Cosmic-CoNN doesn’t detect
multiple cases of single pixel CRs. This type of stamps have to be included in the further training
set of the Cosmic-CoNN

Images that are recognized by the Default CR algorithm on science images as CR, and by the
Cosmic-CoNN on difference images as NOT CR are shown in figure 41. Some stamps contain
objects that are clearly not a consequence of a CR particle, but the Default CR algorithm detected
it as CR. On the other hand, there are a lot of stamps that contain a few pixels CR that were not
detected by the Cosmic-CoNN. If there could be found a way to improve detection for the few pixel
CRs, this would yield great improvement to CR detection.
Images that are recognised by the Default CR algorithm on science images as NOT CR, and by the
Cosmic-CoNN on difference images as CR are shown in figure 42. It is obvious that Cosmic-CoNN
is struggling with the dipole objects because these kind of objects were not present in the training
dataset. Besides that, there are some examples of CRs that were detected correctly.
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Figure 42: All of the stamps that the Default CR algorithm on science images detected as NOT CR,
and the Cosmic-CoNN on difference images detected as CR. Cosmic-CoNN detects lots of dipoles
as CR. Because Cosmic-CoNN wasn’t created for the difference images, dipoles were not included
in its training set.

Agreement between the Cosmic-CoNN run on the science images and the difference images is
good, which is shown on the tables 17 and 18. This is showing that there is no major change
between using the algorithm on science images or the difference images.

science image CR science image NOT CR

difference image CR 665545 (0.076%) 23700 (0.003%)

difference image NOT CR 92537 (0.011%) 880120362 (99.912%)

Purity: 0.878 Completeness: 0.966 F1 score: 0.920

Table 17: Pixel-wise comparison of the CR mask produced by the Cosmic-CoNN on science images
and Cosmic-CoNN on difference images.
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science image CR science image NOT CR

difference image CR 10939 (59.64%) 209 (1.14%)

difference image NOT CR 35 (0.19%) 7160 (39.03%)

Purity: 0.997 Completeness: 0.981 F1 score: 0.989

Table 18: Stamp-wise comparison of the CR mask produced by the Cosmic-CoNN on science images
and Cosmic-CoNN on difference images.

3.1.3 Conclusion

Using the deep convolutional supervised learning proved to be successful. Without any major
disagreement between Cosmic-CoNN and Default CR algorithm we conclude that most of the CRs
are detected by Cosmic-CoNN. In order to improve that, some fine tuning and additional training
is required to provide the model with the specific inside on the HSC (or in future LSST) data. For
that, the creation of the training dataset is required, which can be tedious work.

3.2 Unsupervised Learning

Unsupervised learning in artificial intelligence is the term used for the algorithms that do not use
labeled data to learn. This allows the model to work on its own to discover patterns and information
that was previously undetected. This independence on label data allows this types of algorithms to
be used to be used on the problems in which the labels are hard or impossible to obtain. The Default
CR algorithm created more that 18 000 stamps which, more than a half, contain cosmic rays. To
manually classify that amount of stamps is laborious and unreliable, because in some occasions it’s
hard for humans to tell whether a stamp contain CR or not. For that reason unsupervised machine
learning was used in a hope to find such model, which will, without any knowledge about the
problem we are solving, successfully separate stamps into two groups: CR and NOT CR. Types of
models that were used in this search were improved deep embedded clustering models, which belong
to the broader category of convolutional autoencoder models. This types of models learn how to
recreate the stamps by using dimensionality reduction followed by the dimensionality expansion.
Between dimensionality reduction and expansion is a layer of neurons called ”latent layer” which
contains the representation of the stamps with far less bits than 30x30 pixels stamps. Idea is that
by performing this operation only relevant information about the stamp is contained in the latent
layer. The values of neurons in latent layers represent points in latent space, which is then basis
for the clustering algorithm. More information about this type of neural networks is in: ”Guo, Gao
et. al : Improved Deep Embedded Clustering with Local Structure Preservation”
In order to find models that can represent stamps in such way in the parameter space, so it can easily
be clustered is done by hyperparameter search. Detailed procedure was taken from: ”Mrakovčić:
Automated Classification of LSST Images Using Convolutional Neural Networks”. Changing the
hiperparameters, networks were trained and evaluated by the ability to represent stamps in latent
space in such way that it could be easily clustered into two clusters: one with majority CR labels
and one with the majority NON CR. While the CR and NON CR labels were taken from the
Default CR algorithm, please note that network was not trained on them. Labels were only used
to evaluate which network represents stamps in the most convenient way for this problem. Out of
the 1000 models, one with the highest F1 score on the validation set compared to the Default CR
algorithm labels was chosen. Results of the labels produced by this model is in table 19.
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LAICA CR LAICA NOT CR

Default CR algorithm CR 11185 (60.98%) 26 (0.14%)

Default CR algorithm NOT CR 57 (0.31%) 7075 (38.57%)

Purity: 0.995 Completeness: 0.998 F1 score: 0.996

Table 19: Stamp-wise comparison of the CR mask produced by the Default CR algorithm on science
stamps and LAICA on difference stamps.

This model, which is called LAICA model, in the latent layer contains 2 neurons. In other words
it is encoding every stamp in 2D space. Plotting those encodings of stamps is shown on figure 43.
Curios observation is made: almost every point in latent space lie on the single line. This means
that although 2 neurons spread 2D latent space, representation of the stamps could be represented
with only one variable. Models that have only one neuron in the latent layer also performed very
well, therefore, the stamps can be encoded with only one variable.

(a) Predicted labels (b) Default CR algorithm labels

Figure 43: Parameter space of the LAICA model. The points are nicely clustered together and all
points lie on the almost straight line. This means that the Autoencoder CNN can probably use
single parameter to represent the stamp. By creating this way of representation it has decided to
place CR and NOT CR stamps on the opposite side of the latent space. This fact was used by the
unsupervised clustering to predict labels.

Figure 44 shows the same representation, only showing the stamps that were not used for
training, but only for validation. Distribution of validation set on the latent space follows closely
distribution of the training data. In other words no overfitting was detected.
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Figure 44: Parameter space of the LAICA model for only stamps that were used in the validation
set. Distribution does not diverge from the figure 43. This means it can confidently predict yet
unseen data, and is not restricted on using only the training set.

It is clear that model successfully created parameter space in which CR stamps and NON CR
stamps are clustered together. The PDF and CDF for values of each neuron is shown on figure 45.
This proves that the model successfully learned in unsupervised way to distinguish stamps that
look like CR and the ones that look like NON CR.

(a) Predicted labels (b) Default CR algorithm labels

Figure 45: Distribution of the values of the neurons in the latent layers. Cluster 0 is NOT CR
and cluster 1 is CR. Clusters are well separated. Reason why this model creates representation of
the stamps in a way that it could be easily separated between CR and NOT CR is by design. By
trying 1000 different models we choose one that does this the best.
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Figure 46: Corner plot of the distribution of the stamps in the latent space. 0 and 1 represent
distributions for the neuron 0 and neuron 1 respectively. Separation of the latent layer creates a
confident clustering of two classes.

Figure 47: All of the stamps that the Default CR algorithm on science images detected as CR, and
the LAICA detected as NOT CR. LAICA labels stamps with both objects and CRs as NOT CR.
This can’t be improved by further training, and should be investigated further.

Images that are recognized by the Default CR algorithm on science images as CR, and by the
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LAICA model as NOT CR are shown in figure 47. Most of the stamps contain both objects and
CR-s. LAICA prefers to label stamps that contain both object and CR as NOT CR. Additionally,
stamps with high SNR are also labeled as NOT CR. Stamps which Default CR algorithm mislabeled
as CR are scarce.
Images that are recognised by the Default CR algorithm on science images as NOT CR, and by
the LAICA model as CR are shown in figure 48. LAICA detects stamps with ”banana” shapes as
CR, as well as some very bright dipoles. In addition, some true CR can be seen labeled as CR by
LAICA.

Figure 48: All of the stamps that the Default CR algorithm on science images detected as NOT
CR, and the LAICA detected as CR. LAICA detected a few stamps as CR that look like artefact.
Possiblity of using more than two labels while clustering is a possibility that could solve this type
of mislabeling.

It is important to stress that this algorithm does not perform the same task as the others that
were examined. Every other algorithm was tested with the whole detector panel and asked to
create a mask where the CR pixels are. The mask was then used to determine label of each stamp.
Contrariwise, this algorithm has no ability to produce CR mask and it can only predict labels for
stamps. While the results are not perfect, and the unsupervised algorithm is mislabeling some
stamps, it is a neat way to create somewhat trustworthy dataset of stamps and their labels. More
research is needed to improve this approach.

4 Manual examination

To create a dataset of labeled stamps that contain both CR and NOT CR, manual examination
effort was required. In order to avoid manually labeling the whole set, only the stamps that have
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at least one algorithm’s prediction differ from the others, are hand labeled. We claim that the
stamps that are labeled by every algorithm consistently are correct, and the ones that aren’t are
examined. This way the labeled dataset with greater degree of confidence is produced. Once the
”Truth” labels are produced they are used to evaluate the performance of every algorithm. 632 out
of total 18343 stamps (3.45 %) were closely examined. The ratio between the CR and NON CR
stamps in the hand labeled subset is shown in the table 20. Note that Default CR algorithm on
difference images have smaller subset because not all of the detectors could be analysed.

CR NOT CR

Default CR algorithm sciim 320 312

Default CR algorithm diffim 337 254

AstroScrappy sciim 363 269

AstroScrappy diffim 482 150

Cosmic CoNN sciim 83 549

Cosmic CoNN diffim 257 375

LAICA 351 281

Truth 323 309

Table 20: Number of the labels in the subset that was manually labeled.

LSST sciim CR LSST sciim NOT CR

Truth CR 11182 (60.96%) 32 (0.17%)

Truth NOT CR 29 (0.16%) 7100 (38.71%)

Purity: 0.997 Completeness: 0.997 F1 score: 0.997

Table 21: Stamp-wise evaluation of the CR mask produced by the Default CR algorithm on science
stamps.

LSST diffim CR LSST diffim NOT CR

Truth CR 10477 (60.81%) 7 (0.04%)

Truth NOT CR 69 (0.40%) 6677 (38.75%)

Purity: 0.993 Completeness: 0.999 F1 score: 0.996

Table 22: Stamp-wise evaluation of the CR mask produced by the Default CR algorithm on differ-
ence stamps.

AstroScrappy sciim CR AstroScrappy sciim NOT CR

Truth CR 11207 (62.00%) 7 (0.04%)

Truth NOT CR 47 (0.26%) 7082 (38.61%)

Purity: 0.996 Completeness: 0.999 F1 score: 0.998

Table 23: Stamp-wise evaluation of the CR mask produced by the AstroScrappy on science stamps.
AstroScrappy parameters were taken in the mean square error minimum.
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AstroScrappy diffim CR AstroScrappy diffim NOT CR

Truth CR 11207 (62.00%) 7 (0.04%)

Truth NOT CR 166 (0.90%) 6963 (37.96%)

Purity: 0.985 Completeness: 0.999 F1 score: 0.992

Table 24: Stamp-wise evaluation of the CR mask produced by the AstroScrappy on difference
stamps. AstroScrappy parameters were taken in the mean square error minimum.

Cosmic CoNN sciim CR Cosmic CoNN sciim NOT CR

Truth CR 10951 (59.70%) 263 (1.43%)

Truth NOT CR 23 (0.13%) 7106 (38.74%)

Purity: 0.998 Completeness: 0.977 F1 score: 0.987

Table 25: Stamp-wise evaluation of the CR mask produced by the Cosmic CoNN on science stamps.

Cosmic CoNN diffim CR Cosmic CoNN diffim NOT CR

Truth CR 11017 (60.06%) 197 (1.07%)

Truth NOT CR 131 (0.71%) 6998 (38.15%)

Purity: 0.988 Completeness: 0.982 F1 score: 0.985

Table 26: Stamp-wise evaluation of the CR mask produced by the Cosmic CoNN on difference
stamps.

LAICA CR LAICA NOT CR

Truth CR 11191 (61.01%) 23 (0.13%)

Truth NOT CR 51 (0.28%) 7078 (38.58%)

Purity: 0.995 Completeness: 0.998 F1 score: 0.997

Table 27: Stamp-wise evaluation of the CR mask produced by the LAICA on difference stamps.

Tables 21 - 27 show the evaluation of the different algorithms on compared to the manually
examined and labeled dataset (called TRUTH here, which we know has high purity, and suspect
also high completeness, though the latter needs to be verified using dark frame data). This gives
us the information about the absolute performance of each algorithm relative to TRUTH. F1 score
for every algorithm is very high as well as purity and completeness.

Every algorithm evaluated performed similarly, and no significant improvement of the Default
CR algorithm was found. AstroScrappy on the science images with the parameter sigclip = 5.0
has the best overall performance of F1 = 0.998, but the long runtime means it needs to be further
optimised to perform the task faster. Currently implemented CR algorithm in the LSST stack on
the science images does the detection with high F1 = 0.997 score, meaning that with the current
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implementation of AP pipe, CR contamination of alerts would likely not be significant.

These results also shows that unsupervised machine learning approach could be considered as
a sufficient alternative as a CR detector with no appreciable loss of performance.

5 Conclusions

After experimenting with two conventional cosmic ray detectors and two machine learning ones on
both science and difference images, the conclusion is that there are no major discrepancies between
algorithms. For that reason, we believe that no major improvements are made in CR detection.
Furthermore, after examining disagreements between the algorithms conclusion is made that every
algorithm mislabels different types of objects. For that reason, in order to produce a sample of
high purity and high completeness, we recommend using multiple algorithms. In order to avoid
mislabeling specific type of object it is advised not to trust only single type of algorithm.

The questions that this investigation raised and need further research are:

• How does each of the tested algorithms perform with different seeing? Which algorithm is
the most robust to change in seeing?

• How does each algorithm perform in dark frames, where every signal is a CR?

• Why does the ratio between Default CR algorithm on science image CR - algorithm NOT
CR, and Default CR algorithm on science image NOT CR - algorithm CR changes drastically
between pixel-wise and stamp-wise comparison for every algorithm evaluated. (recognized
when comparing pairs of tables: 3-4, 5-6, 9-10, 13-14, 15-16)

• Can AstroScrappy be optimized further to be comparable to Default CR algorithm runtime
of 3 seconds per detector?

• Can Cosmic-CoNN be further trained on HSC data to improve detection performance?

• What can be learned from the latent space created by unsupervised learning?
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