# Sky-subtraction metrics

And how to make skyCorr LSB-compliant

Aaron Watkins

## Motivation

- Preservation of low-surface-brightness flux in LSST images
- Need one version of the coadd to contain this flux
- Typical point of failure for LSB: sky-subtraction
  - Need a sky-subtraction algorithm that preserves LSB flux, which can run atscale

# Quantifying over-subtraction

- For LSB, "sky" means sky: transient telluric emission
  - Galactic cirrus, diffuse starlight, etc. are all LSB science targets
  - (Reflections, ghosts, ghoulies, etc. probably best targeted separately)
- A sky model which includes flux from science targets is not LSBcompliant
- Can test LSB-compliance via source-injection
  - If LSB-compliant, a sky model should be independent of source density, distribution, luminosity, etc.
  - In other words, sky-subtraction should not impact injected models
  - And injected models should not impact derived sky model

## Testing strategy

- Examined viability of existing skyCorr task
- This consists three sub-tasks (applied to masked images with calexpBackgrounds restored)
  - bgModel
    - 7024 x 7024 px superpixel model of full focal plane
  - doSky
    - Scale and subtract sky frames
  - bgModel2
    - 256 x 256 px superpixel model of sky-subtracted background
- Isolated impact of each step by running skyCorr with different settings, to see if skyCorr could be LSB-compliant

## Experimental setup

| Name         | skyCorr tasks            | Bin size                   | Interpolation |
|--------------|--------------------------|----------------------------|---------------|
| bgModel2-1   | bgModel, doSky, bgModel2 | 1.92 (128 px)              | Akima         |
| default      | bgModel, doSky, bgModel2 | 3.84 (256 px)              | Akima         |
| bgModel2-2   | bgModel, doSky, bgModel2 | 7.68 (512 px)              | Akima         |
| bgModel2-3   | bgModel, doSky, bgModel2 | $15.36 (1024 \mathrm{px})$ | Akima         |
| linear       | bgModel, doSky, bgModel2 | 3.84 (256 px)              | Linear        |
| noBgModel2   | bgModel, doSky           | _                          | _             |
| noDoSky      | bgModel                  | _                          | _             |
| onlyBgModel2 | bgModel, bgModel2        | 3.84 (256 px)              | Akima         |

- Eight tests, primarily varying superpixel ("bin") size in bgModel2
- Also turning off bgModel2, plus miscellaneous tests

# Source injection

- Grid of Sérsic models, quasirandomly distributed (right)
- Injected into single visit (here, 26060, Tract 9615; red circle)
- Run skyCorr (w/specific parameters) on that visit twice:
  - With models injected
  - Without models injected
- Compare impact of skyCorr on models/vice-versa



# Metric 1: impact of skyCorr on models

- Pre-SS (left panel):
  - injected\_calexp calexp
- Post-SS (right panel):
  - (injected\_calexpinjected\_skyCorr)
    - (calexp skyCorr)
  - = models + ΔskyCorr
- Compare radial surface brightness profiles of all models in both images



Isolated models

Isolated models + ΔskyCorr

## Metric 1 (cont.)

- Right: difference between post-SS and pre-SS surface brightness profile of one model
  - Linear units
- Four bgModel2 bin sizes
  - Small bin, noticeable slope in difference profile
  - Values always < 0
- Two metrics: slope & offset



#### Results: slope (local impact)



#### Results: offset (~global impact)



## Bigger models (slope)



## Bigger models (offset)



## Summary of photometry metrics

- bgModel2 bin size limits size of objects that will be preserved
  - ICL preservation is a problem: ~arcmin scales even at moderate redshift
- Turning off bgModel2 negates that problem
  - No risk of flux loss (maybe for objects >7000px; untested)
  - Model-to-model scatter also reduces for small models—better for everyone?

• Photometry as a metric is useful, but abysmally slow

## Metric 2: ΔskyCorr

- Inverse of photometry-based metric: impact of models on skyCorr
- Derived as follows:
  - injected\_skyCorr skyCorr = ΔskyCorr
  - If increased source density has no impact (LSB-compliant), distribution of counts in ΔskyCorr should be a narrow peak at 0
  - If there is an impact, distribution will have a measureable width, maybe with a mean offset from 0

## Example (4 detectors, visit 1274, tract 9615)



## Histogram of full visit (1274)



Lee's trial run as of last Friday, deltaSkyCorrAnalysis in analysis\_tools

# Summary of ∆skyCorr metric

- Condenses photometry metric to a single histogram/handful of numbers
- Much faster to run
  - Load two images per detector
  - Take the difference
  - Compile a histogram
- Not as much granular detail as photometry, but more easily implemented in analysis\_tools
- Both present same story: can approach LSB-compliance by turning off bgModel2 in skyCorr

## Final point (if time)--catalogues

- Say we have an LSB-compliant deepCoadd. Detection/deblending is still done on deepCoadd\_calexp, which lacks LSB flux.
- Catalogues are thus reflective of the deepCoadd\_calexp
- What are the logistics of producing catalogues with LSB detections in them? E.g.,
  - How are objectIDs produced and tracked?
  - How expensive to append rows/columns?
  - What if a whole extra catalogue must be created? (Broader implications, e.g. Manda Banerjee's optical/NIR fusion project)

#### Bonus 1: surface brightness units



#### Bonus 2: total change in flux (nJy)



#### Bonus 3: interplay with real sources

