
Vera C. Rubin Observatory | Agency Quarterly Status | 7 December 2020 Acronyms & Glossary

Prompt Processing
Status
Kian-Tat Lim

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | Agency Quarterly Status | 7 December 2020 Acronyms & Glossary

DMTN-219

2

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | Agency Quarterly Status | 7 December 2020 Acronyms & Glossary

Playbook for Prototype

3

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | Agency Quarterly Status | 7 December 2020 Acronyms & Glossary

Quick Live Demo

4

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | Agency Quarterly Status | 7 December 2020 Acronyms & Glossary

Future Task List

5

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | DMLT Virtual Face-to-Face | 15 February 2022 Acronyms & Glossary

Future Task List

6

● Actually build out the middleware interface with a real calibration repo. Ensure that
performance is adequate. Work with Middleware to optimize anything that isn't.

● Choose a messaging infrastructure. Kafka seems reasonable for next_visit: it
already exists, performance is less critical, it is reliable, it is well-understood. Apache
Camel might be a candidate for connecting Kafka with a webhook for invoking the
Prompt Processing framework.

● Implement DMTN-143 copy to object store. KTL will work on this with TonyJ.
● Implement object store notifications to Prompt Processing. The alternatives here

common to both MinIO and Ceph are Kafka and AMQP. While I have some concerns
about Kafka in this low-latency use case, it seems the simplest to start with.

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | DMLT Virtual Face-to-Face | 15 February 2022 Acronyms & Glossary

Productionize and Optimize

7

● Move from GCP to SLAC K8s. Set up an ingress; investigate ways to get affinity.
● If near-zero edit-to-execute latency is required, at the cost of reliability, use a shared

filesystem for the stack code.
● If full-focal-plane visit-wide processing is required, at the cost of reliability and

latency:
● Use a shared Butler repo for intermediate results
● Manually split pipelines into multiple steps
● Poll Butler repo or possibly use object store notifications again
● Using BPS has virtually no advantages over using OCPS for the same thing;

preloading is basically impossible

https://www.lsst.org/scientists/glossary-acronyms

