Rubin Observatory

Readout Time Optimization Aaron Roodman

PST Meeting | December 8, 2021

Focal Plane Optimizations

- CCD Clock & Bias Voltages
- Sequencer File: Clocking & Readout
- Optimized for:
 - Tearing Mitigation
 - Row-by-row Gain variations & long-range correlations
 - Effects of Serial Flush during exposure
 - Gain stability
 - Bias stability
 - ReadNoise & Readout Time: Serial Clocks & Digitization
 - Full Well & Readout Time: Parallel Transfer

Choose Nominal Operating Conditions and Use throughout the remainder of EO testing, with Goal of maintaining through Commissioning & Operations

Readout Time

Readout time set by controller commands in Sequencer File

		Time (Allotment)	Time (Measured)
	Shutter	2 * 0.980	2 * 0.901
\	Integration	2 * 15.000	2 * 15.000
	Readout	2.000	prior Raft & BOT testing = 2.232
	CCS/ Overheads	0.040	being evaluated
	optional Clear between Snaps	0.000	~0.060
	Total	34.000	

ReadNoise vs. Readout Time

ReadNoise [e-] vs. Readout Time

Number of Amps in Noise ranges

 Noise per Amplifier at 3 Readout Times (2.090, 2.232,2,374) used for limiting magnitude study, what is dPerformance/dTime?

+ 13040:

13041: reduct20percent

13058: RTm10pct13059: RTp10pct

13060: RTp20pct

13091: ISO1m20pct

13096: ISO2m20pct

13099: ISO2m10pct

13104: PA2 13111: PA3 13129: 2.0s

+ 13130: 2.1s + 13131: 2.2s + 13132: 2.3s + 13133: 2.4s

'. Utsumi

13043: reduct10percent 13044: increase10percent

No other impact seen from changing readout time (eg CTE essentially the same)

READ_NOISE_SCALED Run 13040

8 10 12 14 16

READ_NOISE_SCALED Run 13040

READ_NOISE_SCALED Run 13040

READ_NOISE_SCALED Run 13040

R14 RTM-006

R34 RTM-008

8 10 12 14 16 READ_NOISE_SCALED Run 13040

Full well & CTE vs. Parallel Transfer Time

Longer Parallel Transfer Time increases Full Well and CTE uniformity in e2v sensors

Y. Utsumi C. Juramy

• Increase Parallel Transfer by ~30msec from previous nominal, to gain most of this improvement

Comments & Conclusions

- also planning to study much longer readout times of 3,4,5 seconds, as part of EO test plan, expect only small additional improvements in Noise
- Net Gain in m5 from slightly longer readout time
- Take as nominal:
 - Serial readout based on 2.374 sec readout
 - Parallel transfer extended by ~30msec
- Recommendation: Total Frame readout time of proposed nominal Sequencer
 File = 2.407sec
- Implication is that total Camera Visit time would be ~34.25 instead of 34.00 seconds

