
Vera C. Rubin Observatory | Agency Quarterly Status | 7 December 2020 Acronyms & Glossary

rubin-env
Kian-Tat Lim

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | Build Workshop | 14 April 2021 Acronyms & Glossary

What Is rubin-env?

2

● conda metapackage (no contents, only references to other packages)
● Contains all conda-forge-published third-party dependencies

● Except eigen and ones under development by Rubin developers
● Others where we need to patch upstream would be similar

● Most are unpinned; exceptions at https://confluence.lsstcorp.org/display/DM/
DM+Third+Party+Software
● C++ interfaces are pinned at major version (or sometimes minor)
● Unpinning gives flexibility when installing other packages on top
● Actual versions are recorded for builds and releases in Jenkins and

eups.lsst.codes (lsstinstall.sh will give access)
● No build-time or runtime dependency of stack code on rubin-env version

https://www.lsst.org/scientists/glossary-acronyms
https://confluence.lsstcorp.org/display/DM/DM+Third+Party+Software
https://confluence.lsstcorp.org/display/DM/DM+Third+Party+Software

Vera C. Rubin Observatory | Build Workshop | 14 April 2021 Acronyms & Glossary

Semantically Versioning rubin-env

3

● rubin-env build version bumps:
● compatible with previous and new code; same versions as before
● < pins for existing dependencies

● rubin-env patch version bumps:
● compatible with previous and new code; code can rely on fixes
● > pins for existing dependencies (should probably use this more)
● < pins if to earlier than previous patch

● rubin-env minor version bumps:
● compatible with previous and new code; new packages/features
● Add new dependencies

● rubin-env major version bumps:
● compatible with new code only
● Remove dependencies or major dependency updates

https://www.lsst.org/scientists/glossary-acronyms

Vera C. Rubin Observatory | Build Workshop | 14 April 2021 Acronyms & Glossary

Using Upgraded Dependencies

4

● Dependency bumps:
● Canaries: Jenkins lsst_distrib and ci_hsc clean builds always use fresh environment
● stack-os-matrix also uses fresh environment but shouldn't and may not rebuild LSST packages
● Release always uses fresh environment but may not rebuild LSST packages
● lsstsqre/centos + RSP containers and shared stack never use fresh environments

● rubin-env build bumps:
● Could manually update container base and shared stack

● rubin-env patch/minor/major bumps:
● rubin-env default version coded into newinstall.sh, lsstsw/deploy, and Jenkins configuration
● Shared stack needs to be manually updated with a new environment (although theoretically a

new rubin-env could be installed in the same environment up to minor bumps)
● If we cannot upstream patches, create an eups TaP package or forked package

https://www.lsst.org/scientists/glossary-acronyms

