
Rubin Observatory Operations Boot Camp 2020 October 13

Part 2: Science Pipelines, Writing and
Running a Processing Pipeline

1

Nate Lust

Rubin Observatory Operations Boot Camp 2020 October 13 | 2

What is a Pipeline?

• Individual processing steps are declared in units of code called
PipelineTasks

• Multiple PipelineTasks are grouped together into a processing workflow
called a Pipeline

• Pipelines are documents declared in yaml format and have a python
API for programmatic creation and manipulation

• Pipelines documents need not be created in an ordered fashion,
execution ordering is determined by the dependency relations of the
PipelineTasks that are to be run

• Pipelines create a very high level interface for controlling data
processing and enable quick turnarounds with little programming or
interacting with the software stack

Rubin Observatory Operations Boot Camp 2020 October 13

What’s in a Pipeline

• A set of PipelineTasks to run with a unique label associated with each
task

• Per label configuration (value or file based specification is supported)
• Instrument specification (optional) from which any specific configs are

loaded
• Pipelines can inherit and extend other Pipelines
• Supports cross-PipelineTask configuration validation

| 3

Rubin Observatory Operations Boot Camp 2020 October 13

An example Pipeline

| 4

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Tasks

• PipelineTasks to run are specified under a tasks heading, each with a
unique label. This allows specifying the same Task to run multiple
times with different configurations.

• Tasks are specified with a full namespace qualifier

tasks:
 isr: lsst.ip.isr.IsrTask
 charImage: lsst.pipe.tasks.characterizeImage.CharacterizeImageTask
 calibrate: lsst.pipe.tasks.calibrate.CalibrateTask

| 5

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Configuration

If a task needs configuration values that differ from default values,
pipelines accept a “config” directive when declaring what task to run, and
class is specified using a directive named “class”.

tasks:
 forcedPhotCcd:
 class: lsst.meas.base.forcedPhotCcd.ForcedPhotCcdTask
 config:
 doApplyExternalPhotoCalib: False
 doApplyExternalSkyWcs: False
 doApplySkyCorr: False

config supports key value, external config file, and string with valid python
syntax

| 6

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Labeled subsets

Pipelines can label subsets of tasks, with an optional description. This
enables a standard subset of tasks to be easily executed. More on this
later.

tasks:
 isr: lsst.ip.isr.IsrTask
 charImage: lsst.pipe.tasks.characterizeImage.CharacterizeImageTask
 calibrate: lsst.pipe.tasks.calibrate.CalibrateTask
 makeWarp: lsst.pipe.tasks.makeCoaddTempExp.MakeWarp
 assembleCoadd: lsst.pipe.tasks.assembleCoadd.CompareWarpAssembleCoaddTask
subsets:
 processCcd:
 subset:
 - isr
 - charImage
 - calibrate
 description: Used to process the data of a single ccd

| 7

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Contracts

Pipelines may specify a series of statements, named contracts, that must
evaluate to true for a pipeline to be considered sound. These contracts can
be used to validate that configuration between tasks is self consistent, or
that a configuration value has been set.

• Contracts are specified under a top level directive named ‘contracts’
• Support either a single contract string, or a mapping of contract: str,

msg: str where msg is a string to display to a user if a contract is
violated

contracts:
 - modA.biz == modB.baz
 - contract: modA.biz > 0

msg: “the biz configuration associated with label modA must be
positive” | 8

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Instrument

• An ‘instrument’ directive may be added to a pipeline from which
configuration will be loaded.

• The value of the directive must be a fully qualified camera class.
• An instrument directive will most commonly be seen in Pipelines

defined in an obs package.

Instrument: lsst.obs.subaru.HyperSuprimeCam

| 9

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Inheritance

To support composition, Pipelines are inheritable. When a Pipeline inherits
from another pipeline it includes all the tasks and configuration
declarations, named subsets, and any contracts defined.

Inherited pipelines can then either declare new tasks, or extend/replace
existing tasks

| 10

Rubin Observatory Operations Boot Camp 2020 October 13

Parts of a Pipeline: Inheritance (cont.)

inherits:
 - $ENV_VAR1/SamplePipeline1.yaml
 - location: $ENV_VAR2/SamplePipeline2.yaml

 importContracts: Fasle
 - location: $ENV_VAR3/SamplePipeline3.yaml

 include:
 - modA
 - modB
 - location: $ENV_VAR4/SamplePipeline4.yaml
 exclude: modC

| 11

Pipelines to inherit are placed
under a top level inherits directive
and should be specified as a single
string or a yaml list of paths to
Pipeline yaml documentsPaths support environment variable

expansionImporting of contracts can be
turned off

Imports optionally support including
only specific labels OR excluding
specific labels

Rubin Observatory Operations Boot Camp 2020 October 13

Example Pipeline Inheritance

| 12 12

Rubin Observatory Operations Boot Camp 2020 October 13

Pipeline conventions

• The name of Pipeline should follow class naming conventions (camel
case with first letter capital).

• Preface a Pipeline name with an underscore if it is not intended to be
inherited and or run directly (it is part of a larger pipeline).

• Use inheritance to avoid really long documents, using ‘private’
Pipelines named as specified above.

• Pipelines should contain a useful description of what the Pipeline is
intended to do.

• Pipelines should be placed in a directory called ‘pipelines’ at the top
level of a package.

• Instrument should packages provide Pipelines that are specifically
configured for that instrument (if applicable).

| 13

Rubin Observatory Operations Boot Camp 2020 October 13

Running a Pipeline

Pipelines are run using some kind of activator. The default activator in the
software stack is named pipetask

pipetask run -j <number_of_cores> -b <repo> --input
<input_collection(s)> --output <output_collection> -p
<package>/pipeline/Pipeline.yaml

• The input argument takes a name, or a list of names, of collections to
search for inputs the Pipeline needs

• Output takes a name that will be used when creating a collection that
will store all the outputs produced by the pipeline

| 14

Rubin Observatory Operations Boot Camp 2020 October 13

Running a subset of a Pipeline

Pipelines also support running a subset of an already defined pipeline,
useful for testing/re-creating outputs. This can be a list of labels, or a
start..stop range (only valid for linear pipelines)

List of labels:

pipetask run -j <number_of_cores> -b <repo> --input <input_collection(s)>
--output <output_collection> -p
<package>/pipelines/Pipeline.yaml:label1,label2,label3

Label range;

pipetask run -j <number_of_cores> -b <repo> --input <input_collection(s)>
--output <output_collection> -p <package>/pipelines/Pipeline.yaml:label1..label3

| 15

Rubin Observatory Operations Boot Camp 2020 October 13

Running a subset of a Pipeline

As mentioned Pipelines can contain one or more labeled subsets. Supply
one or more names in the same way as specifying a task label to run the
defined tasks. These may be mixed with task labels in a list style
specification.

pipetask run -j <number_of_cores> -b <repo> --input <input_collection> --output
<output_collection> -p <repo>/pipelines/Pipeline.yaml:processCcd,makeWarp

| 16

Rubin Observatory Operations Boot Camp 2020 October 13

Configuration at runtime

Pipelines support overriding configuration at runtime with either individual
values and/or a valid pex_config formated file

pipetask run -j <number_of_cores> -b <repo> --input <input_collection(s)> --output
<out_collection> -p <package>/pipelines/Pipeline.yaml -c modA:biz=6 -C
modB:<path>/config

| 17

Rubin Observatory Operations Boot Camp 2020 October 13

Running an individual PipelineTask

If there are a small number of tasks to run, and that pipeline is only
intended to be run one or two times, it is sometimes easier to directly
specify the PipelineTasks to run. This can be done using the -t option and
complete namespace of a PipelineTask along with a :<label>

pipetask run -j <number_of_cores> -b <repo> --input <input_collection(s)>
--output <out_collection> -t lsst.demo.TaskA:modA -c modA:biz=6

This method is intended for debugging or testing purposes. It is highly
recommended to create a Pipeline document, or run part of all of an
existing Pipeline. Running a single task will in general have a different
configuration than the same task defined within a pipeline. | 18

Rubin Observatory Operations Boot Camp 2020 October 13

Examining a Pipeline to be executed

Due to inheritance and dynamic configuration, it is sometimes hard to get
a complete picture of the Pipeline that will be executed. In this case use
the --show pipeline option of pipetask. The output will be the fully
inherited pipeline with all command line configs applied.

pipetask build -p <package>/pipelines/Pipeline.yaml --show pipeline

Note the sub command above is build and not run, as we only want to
view the pipeline.

| 19

Rubin Observatory Operations Boot Camp 2020 October 13

Specifying Data

The data that a Pipeline will process is determined by the tasks that will be
run, what input collections are specified, and what constraints are given in the
pipetask command.

PipelineTasks declare what datasets they require as inputs and what datasets
they will produce. This information is used to order the pipeline execution. The
dataset types of the beginning tasks that are present in the input collections
are then loaded and used to begin the execution chain.

Further constraints on what dataset types will be loaded can be given with the
-d option to pipetask.

pipetask run -j <number_of_cores> -b <repo> --input <input_collection(s)>
--output <output_collection> -p <package>/pipelines/Pipeline.yaml -d “band
= i”

| 20

