Deblending in the Rubin Observatory LSST Stack

Fred Moolekamp

Current Stack Deblender

- Based on Robert Lupton's SDSS deblender
- Attempts to use the least restrictive model:
 - Attempt to fit each source to the PSF (stars and very faint galaxies)
 - Make a symmetric template for each remaining source
 - Make that template monotonically decreasing from the peak
 - Use the template to redistribute the flux in the original image

Current Stack Deblender

1D Example

This works shockingly well!

A more pathological example

Current Stack Deblender

Problem:

- The source in the center has objects on both sides
- When redistributing flux with the templates all three sources will have incorrect photometry

Here be dragons!

Co-created with Peter Melchior (Princeton)

Other contributing developers:

- Remy Joseph (Princeton)
- Francois Lanusse (UC Berkeley)

All of the previous deblenders (other than MOF) use single band images:

HSC i-band image credit: Nate Lust

All of the previous deblenders (other than MOF) use single band images:

HSC gri-bands image credit: Nate Lust

Basic "Single Component" Model Model transformed to observed PSF

Constraints

SED

• Non-negative

Morphology

- Non-negative
- Normalize peak to unity
- Monotonicity
- Symmetry
- Sparsity
- Color
- Smoothness
- Galaxy template priors (Francois Lanuse)

New scarlet 1.0

Significant updates made by Peter Melchior in the fall:

- Updated optimization algorithm to ADAM (adaptive gradients)
- Allows a much wider range of models that can all be fit jointly:
 - Single Component Extended Sources (morph and sed, from original scarlet)
 - Multiple Component Sources (e.g. bulge, disk, star forming regions)
 - Point Source models (amplitude and position)'
 - Parametric Models (e.g. Sersic Bulge with Exponential disk)
 - Pixel CNN network with real galaxy templates (Francois Lanusse, in development)
 - Custom models defined by the user
- Allows the addition/deletion of sources (or change in models) from iteration to iteration
- See Peter's presentation from earlier today in the DESC-Blending Working Group for more details on this update (<u>link</u>)

Testing the deblenders

HSC Data Info

- **78** 1k ×1k patches from HSC COSMOS dataset, tract **9813**, with fake sources injected by Sophie Reed
- Using LSST Science Pipeline detection:
 - Total sources: 179,064
 - Total blends: 23,765
 - Total isolated sources: 42,112 (23.5%)
 - Total fakes injected (and detected): 4,760 (2.7%)
 - Unique fakes: 3,580 (2%)

Simulated Sources Info

- ~4760 total fake sources ~(3265 stars, 1495 galaxies)
- Injected sources come from the <u>Fatboy</u> catalog at UW, which gives RA/DEC positions and magnitudes for stars and galaxies, and parametric model parameters (Sersic bulge, exponential disk) for galaxies
- All sources within the sky coordinates of the HSC patches were injected using the <u>insertFakes task</u>.

HSC Data Info: Blending

Blending Statistics

- Statistics and plots have the following configurations:
 - Default
 - The current stack deblender (meas_deblender)
 - Old scarlet (v 0.5)
 - Symmetry
 - Uses symmetry and monotonicity to constrain the morphology
 - No Symmetry
 - Only uses monotonicity to constrain the morphology
 - New scarlet (v 1.0) (none of these use symmetry)
 - Adam
 - Uses the new version of scarlet with a high pixel detection threshold=small boxes
 - Single
 - Same as ADAM but uses a lower threshold, giving larger boxes
 - Double
 - Same as single except it attempts to model each source with 2 components

Blending Statistics

	Default	Symmetry	No Symmetry	ADAM	Single	Double
Total Sources	140,794	149,820	172,205	172,962	172,948	158,443
Runtime per isolated source (ms)	-	605.7	450.1	807.2	539.3	514.2
Runtime per blended source (ms)	-	494.1	319.6	858.9	847.4	579.2

Blending Statistics

Outliers (stellar mag)

Outliers (galaxy mag)

Outliers (stellar colors)

Outliers (galaxy colors)

Most important short-term issues to address

- Identification of source type
- Iterative detection and deblending to find new sources in the residuals and remove spurious detections
- Optimization of runtime
 - CSML scientist testing pytorch and JAX implementations for performance
 - Analytic convolutions instead of FFTs?
- Test memory usage
 - Old scarlet used the entire blend and could not deblend a full HSC patch
 - New scarlet uses boxes and may finally be able to deblend a full patch

Summary and Future Work

- There exists at least one deblending configuration in scarlet that produces more accurate stellar and galactic photometry and colors (but not jointly)
- Future work on initializations, iterative deblending and detection, and identification of source type should lead to a deblender that is more robust in all categories
- Test shape parameters and bias that will affect weak lensing
- Run time will always be more expensive than the current deblender, but may be partially offset by savings in measurement time

