
Gen3 Middleware Progress Report, 2019-06

Outline
● Milestone statement
● Butler with Oracle Registry
● RC2 Data Ingest
● QuantumGraph Generation Optimization
● Ongoing Database Concerns
● Batch Production Service v0.1
● Running RC2 with Gen3
● Planned vs. Completed

2

● FY2019-1 Milestone:
○ Running ci_hsc via Gen3 + Pegasus + sqlite3 + global repo

● FY2019-2 Milestone:
○ Running RC2 via Gen3 + Pegasus + Oracle + global repo
○ More details:

■ https://confluence.lsstcorp.org/display/DM/Gen3+Milestone+FY2019-2

Overview Gen3 Milestone FY2019-2

3

https://confluence.lsstcorp.org/display/DM/Gen3+Milestone+FY2019-2

Overall, this is a success story for our architecture: this involved a small number of actual code changes, with
most of the time going into tracking down quirks.

● Used SQLAlchemy machinery for using sequences for auto increment fields, on backends that need it.

● Change how we disable connection pooling (SQLAlchemy treats SQLite unusually).

● Customized how views are created, serving as a template for extending to other databases as well.

● Slightly modified SQLAlchemy statements such that they produce more standard SQL statements.

○ Often there are multiple similar ways to do things with SQLAlchemy that at first glance seem to
do the same thing, but they produce different commands which only have similar results.

○ This may be a clue for future optimization paths: minor statement changes may lead to more
efficient DB access patterns.

● Modified our few hard-coded SQL statements to use more standard SQL syntax with broader DB
support.

Making Butler more RDBMS-agnostic

4

● Modified table names to be case-insensitive

○ SQLite and Oracle may be on extreme ends of RDBMs handling of case sensitivity
(SQLite is extremely permissive).

○ While case-sensitive table names worked in Oracle with quoting, that isn’t the
normal Oracle behavior, and it causes red-herring problems when humans are
using non-Butler tools to look at data in the database.

● Created Oracle Registry subclass (trivial; most behavior shared).

● View customization for Oracle.

Updating the connection strings and customizing the view creation also allowed the Butler
to work with PostgreSQL. Similar minor changes should be all that is necessary to make
Butler work with MySQL as well.

Oracle Backend for Butler

5

Raw science images:
● Ingested directly into a Gen3 repo, given a list of filenames.
● Needs to be upgraded in the future to do vectorized inserts.

Master calibration images:
● Transferred from a Gen2 repository; until we can generate

master calibrations in Gen3 directly, we have to pull validity
ranges from the Gen2 calibRegistry.sqlite3 database.

● No filtering based on what raws were ingested.
● Really needs to be upgraded to do vectorized inserts.

RC2 Data Ingest

6

SkyMap (tract/patch) registration:
● Runs directly against Gen3.
● Already upgraded to vectorized inserts (the difference between

a runtime of multiple days vs. ~4 minutes).

Reference catalog ingest:
● Runs directly against Gen3.
● Only the shards overlapping ingested raws are ingested.
● No vectorized inserts (but not a bottleneck due to filtering).

RC2 Data Ingest

7

Bright Object Mask ingest:
● Converted from Gen2 repo, just to avoid hard-coding the

filename template in the script (i.e. easy to make Gen3 native).
● Only patches overlapping ingested raws are ingested.
● No vectorized inserts (but not a bottleneck due to filtering).

RC2 Data Ingest

8

● A new Gen3 SQLite repo can be bootstrapped in ~4 hours, with
most of the time spent ingesting master calibrations.

● Oracle is much slower (18 hours!), but we understand why and
how to fix it. 85% of database workload due to overzealous use
of savepoints. Additional overhead from row-by-row
processing. Likely other optimization opportunities.

● There are high-level Python interfaces for all of these steps
(obs.base.gen3.BootstrapRepoTask), but no general command-line
interface - there's just a lot of highly-structured input
information that's hard to map to command-line arguments.

RC2 Data Ingest

9

The QuantumGraph Generation algorithm starts with a big, complex
(50 KB!) SQL query, followed by lots of small, simple, follow-up
queries.

We started with a very naive system - no indexes in the database,
no caching on the Python, and no previous attempts to optimize.

Predictably, it was really slow: we killed the first runs after waiting
over 30 hours.

Unless otherwise noted, all benchmarks are for generating a QuantumGraph
for all Tasks, in all 5 HSC bands, in just tract=9615, in Oracle.

QuantumGraph Generation Optimization

10

Step 1: we didn't have any indexes, and knew we needed some.

● Added a small set of 13 indexes, identified from database trace
while query was running (more can be added later; these were
just the most important/obvious).

● Brought "big initial query" runtime from unbounded down to
~25 minutes.

● Remaining time (still unbounded) was in Python
result-processing code and follow-up queries.

Sources of QGraph Generation Slowness

11

Step 2: duplication in follow-up queries (identified in DB traces)

● Two queries were being run ~3 million times each with the same
arguments.

● Others were being run 1-2 million times with only <10k distinct
arguments.

● We added caching for the results of these queries in Python.

● This brought the total time down to ~25 minutes (about 10%
seems to be in Python rather than DB, but profiler overhead is
now significant enough to make the exact amount unclear).

Sources of QGraph Generation Slowness

12

Step 3: inefficient ordered-search subquery

● A common piece of the big initial query is a variation on a
subquery that searches an ordered sequence of collections for a
particular dataset.

● This was originally written with a pair of nested CASE
subqueries, and was rewritten to use a single CASE in a window
function.

● This actually slowed things down slightly in our initial tests, but
we're still working on the details. Ran out of time for now.

Sources of QGraph Generation Slowness

13

Step 4: Explore additional optimization opportunities

● Views are used to simplify SQL but we suspect they are causing
issues in execution plan generation for a number of reasons.

● As execution plans change with iterative improvements, revisit
overall indexing.

● Investigate causes of incorrect cardinality estimates by
optimizer.

● Possible schema design changes and data volume reduction.

Sources of QGraph Generation Slowness

14

15

QuantumGraph Generation timing
Don't read too much into this; I
expect it to change completely
once we have had a chance to
act on all of what we've learned
already.

We should also be reporting time
in terms of LIOs (logical I/O i.e.
memory accesses), not wall-clock
time.

Ongoing Database Concerns
● Ensuring predictable response times for dynamically generated,

large join count SQL w/ inclusion of multi-registry functionality
● Connection management for highly concurrent pipeline

processing
● Scalability limitations due to schema design
● Workload management / adequate service levels / partitioning

of database resources as other workloads are added to the
database

● Row-by-row transaction processing overhead

16

● New Batch Production Service

 Batch Production Service v0.1

● Previous version consisted of a hardcoded shell script written
specifically to run either demo or full ci_hsc pipeline after
resetting repo.

● v0.1 Improvements:
○ BPS portion is all python (https://github.com/lsst-dm/ctrl_bps)

■ resetting repo is not part of BPS and still shell script driver
○ BPS takes an execution config

■ Allows setting memory requirement for pipetasks
○ Due to long wallclock of initial versions of QuantumGraph Generation, added

feature to start from existing QuantumGraph
○ ctrl_exec/allocateNodes.py changed to create partitionable HTCondor slots

17

https://github.com/lsst-dm/ctrl_bps

Running RC2 with Gen3
● Skip tasks skyCorrection, jointcal, ForcedPhotCcd for now
● Stack w_2019_21 & daf_butler tickets/DM-19808 + DM-19851
● RC2 repo creation using stack w_2019_20 and a calibration fixup

○ As mentioned in previous slide, this took 18 hrs
● Some manual fixups such as adding dataset types
● To run on multiple nodes using BPS:

○ lsst-dm/ctrl_bps branch tickets/DM-19846
○ Generate quantum graph for the full tract
○ Run by BPS via Pegasus

● Run using partitionable HTCondor slots created by ctrl_exec's allocateNodes.py in a
Slurm reservation

● Working towards a successful run of a full tract. The most recent blocking bug in
QuantumGraph generation: DM-19988

18

RC2 Tract 9615 Quantums

19

Count Abbrev pipelineTask

5067 isr lsst.ip.isr.isrTask.IsrTask

5067 cit lsst.pipe.tasks.characterizeImage.CharacterizeImageTask

5067 ct lsst.pipe.tasks.calibrate.CalibrateTask

3351 mwt lsst.pipe.tasks.makeCoaddTempExp.MakeWarpTask

405 cwact lsst.pipe.tasks.assembleCoadd.CompareWarpAssembleCoaddTask

405 dcst lsst.pipe.tasks.multiBand.DetectCoaddSourcesTask

81 mdt lsst.pipe.tasks.mergeDetections.MergeDetectionsTask

405 dcsst lsst.pipe.tasks.deblendCoaddSourcesPipeline.DeblendCoaddSourcesSingleTask

405 mmcst lsst.pipe.tasks.multiBand.MeasureMergedCoaddSourcesTask

81 mmt lsst.pipe.tasks.mergeMeasurements.MergeMeasurementsTask

405 fpct lsst.meas.base.forcedPhotCoadd.ForcedPhotCoaddTask

Running RC2 with Gen3
Summary from a (failed) test run tract=9615

20739 Quantum = 20739 Quantum jobs,
11 pipelineTasks = 11 init-only jobs (e.g., create any science schema files)
Total jobs created by BPS = 20750

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 20443 37 270 20750 37 20517
Jobs 22525 37 270 22832 37 22599
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 4 hrs, 34 mins
Cumulative job wall time : 34 days, 9 hrs
Cumulative job wall time as seen from submit side : 34 days, 10 hrs
Cumulative job badput wall time : 1 hr, 10 mins
Cumulative job badput wall time as seen from submit side : 1 hr, 10 mins

20

Failures tract=9615
37 job failures reported.
Currently BPS runs until can’t run any more.
Not yet determined if errors are due to same problem in DM-19988 or are separate issues.

● 1 cit - lst::psex::exceptions::InvalidParameterError: 'Only spatial variation (ndim == 2)
is supported; saw 0'

● 19 ct - RuntimeError: Unable to match sources
● 1 ct - RuntimeError: No matches to use for photocal
● 2 cwact - RuntimeError: Unable to determine PSF to use for detection: no sigma

provided
● 14 mmt - ValueError: Error in inputs to MergeCoaddMeasurements: source IDs do not

match

21

Running RC2 with Gen3
Summary from a (failed) test run tract=9615

470446d1-2186-4fc9-ae01-45de57d452ab (G3M19c_000001_015)
Transformation Count Succeeded Failed Min Max Mean Total
cit 5069 5067 2 8.021 295.507 97.334 493384.826
ct 5087 5047 40 3.863 122.164 41.5 211111.006
cwact 389 385 4 2.817 686.533 483.046 187904.728
dagman::post 22599 22525 74 0.0 18.0 2.919 65974.0
dcsst 366 366 0 2.169 386.266 221.964 81238.867
dcst 385 385 0 3.105 176.216 69.395 26717.263
fpct 296 296 0 10.553 3207.465 2340.74 692859.124
isr 5068 5068 0 4.061 49.942 27.261 138156.663
mdt 74 74 0 2.675 29.446 19.753 1461.692
mmcst 366 366 0 3.797 4418.415 2519.319 922070.802
mmt 88 60 28 2.724 24.742 17.278 1520.433
mwt 3329 3329 0 3.079 104.835 58.186 193702.604
pegasus::dirmanager 1 1 0 2.158 2.158 2.158 2.158
pegasus::transfer 2081 2081 0 3.438 23.554 9.616 20010.862

22

Planned vs Completed

23

Planned Deliverable Status

Results of running Gen3 DRP pipeline on
RC2 HSC data on lsst-dev

● Using Oracle as backend for registry
of shared butler repository

● Pegasus for workflow

● No successful runs (blocked by
DM-19988)

● Oracle: Working, but SQL
inefficiencies need work

● BPS: improvement, but large gap to
production system.

Gen3 run as part of the monthly HSC-RC2
reprocessing runs

● Incorporate into procedures with
lower expectations than Gen2

Not ready at this time to be run regularly
without extra effort.

Instructions for friendly-user developers
using Gen3 Butler with Oracle

https://confluence.lsstcorp.org/display/DM/
Oracle+with+Gen3

● User access to Prod outputs delayed

Maintainable Registry code Some reorganization deferred to later

https://confluence.lsstcorp.org/display/DM/Oracle+with+Gen3
https://confluence.lsstcorp.org/display/DM/Oracle+with+Gen3

